
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,902 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
Spectral method for the diffusion equation with a source term | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 110، دوره 13، شماره 2، مهر 2022، صفحه 1343-1355 اصل مقاله (520.29 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.19444.2082 | ||
نویسندگان | ||
Ahcene Lateli* 1؛ Amor Boutaghou2؛ Tayeb Hamaizia1 | ||
1Institute of Mathematics, Department of Mathematics, University of Mentouri, Constantine 25000, Algeria | ||
2Institute of Mathematics, Department of Mathematics, University of Dr. Yahia Fares, Medea, Algeria | ||
تاریخ دریافت: 16 دی 1398، تاریخ پذیرش: 13 شهریور 1400 | ||
چکیده | ||
The aim of this paper is to investigate the Legendre spectral method for solving the diffusion equation with a source term and mixed initial-boundary value problem in a finite rectangle $\Omega _{2}$, we use some techniques to convert the problem to a system of ordinary differential equations and by an analysis matrical we find a general term defines all ordinary differential equations of this system, we solve this general term we get the desired approximate solution, we also present the error estimate. | ||
کلیدواژهها | ||
Diffusion Equation؛ Spectral method؛ Orthogonal polynomials؛ Quadrature formula؛ Orthogonal matrix؛ Eigenvalues؛ error estimate | ||
مراجع | ||
[1] A. Boutaghou and F.Z. Nouri, On finite spectral method for axi-symmetric elliptic problem, J. Anal. Appl. 4 (2006), no. 3, 149–168. [2] A. Boutaghou and F.Z. Nouri, Stokes problem in the case of axi-symmetric data and homogeneous boundary conditions, Far East J. Appl. Math. 21 (2005), no. 2, 219–239. [3] A. Quarteroni, R. Sacco and F. Saleri, M´ethodes Num´eriques, Algorithmes, Analyse et applications, SpringerVerlag Italia, Milano, 2007. [4] B. Mercier, Stabilit´e et convergence des m´ethodes spectrales polynomiales: Application `a l’´equation d’avection, R.A.I.R.O. Anal. num´er. 16 (1982), 97–100. [5] C. Bernardi and Y. Maday, Approximations spectrales de problemes aux limites elliptiques, Vol. 10. Berlin: Springer, 1992. [6] C. Bernardi, M. Dauge, Y. Maday and M. Aza¨ıez, Spectral methods for axisymmetric domains numerical algorithms and tests due to Mejdi Aza¨ıez, Series in Applied Mathematics, Gauthier-Villars, Paris Amsterdam Lausanne, 1999. [7] C. Canuto, Spectral methods in fluid dynamics, Springer-Verlag, Berlin; New York, ed. Corr. 2nd print., 1988.[8] D. Gottlieb, The stability of pseudospectral Chebyshev methods, Math. Comput. 36 (1981), 107–118. [9] D. Gottlieb and S.A. Orszag, Numerical analysis of spectral methods: Theory and applications, Society for Industrial and Applied Mathematics, 1977. [10] D.J. Acheson, Elementary Fluid Dynamics, Oxford University Press, New York, 1990. [11] D. Richards, Advanced mathematical methods with Maple, (Cambridge University Press, Cambridge, UK; New York, 2002. [12] E.P. Stephan and M. Suri, On the convergences of the p-version of the boundary element Galerkin method, Math. Compt. 52 (1989), 31–48. [13] G. Allaire, Analyse Num´erique et Optimisation: Une introduction `a la mod´elisation math´ematique et `a la simulation num´erique, Editions Ecole Polytechnique, 2005. [14] H.J. Weber and G.B. Arfken, Essential Mathematical Methods for Physicists, Elsevier, Academic Press, San Diego, 2004. [15] J. De Frutos and R. Munoz-Sola, Chebyshev pseudospectral collocation for parabolic problems with nonconstant coefficients, Proc. Third Int. Conf. Spect. High Order Meth., 1996, p. 101–107. [16] L. Pujo-Menjouet, Introduction aux ´equations diff´erentielles, Universit´e Claude Bernard, Lyon I, France, 1918. [17] M. Crouzeix and A.L. Mignot, Analyse num´erique des ´equations differentilles, Masson, Paris, 1989. [18] M. Dauge, Spectral-Fourier method for axi-symmetric problems, Proc. Third Int. Conf. Spect. High Order Meth., 1996. [19] M. Gisclon, A propos de l’´equation de la chaleur et de l’analyse de Fourier, J. Math. ´el`eves 1 (1998), no. 4, 190–197. [20] M.S. Sibony and J.-C. Mardon, Approximations et ´equations diff´erentielles, Hermann, Paris, 1982. [21] P.G. Ciarlet, Introduction `a l’analyse num´erique matricielle et `a l’optimisation, Dunod, 2007. [22] P.J. Davis and P. Rabinowitz,Methods of numerical integration, Courier Corporation, 2007. [23] R. Dautray and J.L. Lions, Analyse math´ematique et calcul num´erique pour les sciences et les techniques, Mason Paris, tome 3, 1987. [24] S.A. Orszag, Numerical simulation of incompressible flows within simple boundaries in Galerkin (spectral) representations, Stud. Appl. Math. 50 (1971), 293–327. [25] S.A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980), 70–92. [26] S. Larsson and V. Thom´ee, Partial differential equations with numerical methods, Texts in Applied Mathematics, Springer, Berlin, New York, 2003. [27] T.N. Phillips and A.R. Davies, On semi-infinite spectral elements for Poisson problems with re-entrant boundary singularities, J. Comput. Apll. Math. 21 (1988), 173–188. [28] V.I. Smirnov and J. Sislian, Cours de mathematiques superieures, Tome iii-deuxieme partie, 1972. | ||
آمار تعداد مشاهده مقاله: 44,731 تعداد دریافت فایل اصل مقاله: 535 |