
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,816 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
Some Pareto optimality results for nonsmooth multiobjective optimization problems with equilibrium constraints | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 176، دوره 13، شماره 2، مهر 2022، صفحه 2185-2196 اصل مقاله (406.26 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25146.2928 | ||
نویسندگان | ||
Ali Ansari Ardali* 1؛ Maryam Zeinali2؛ Gholam Hassan Shirdel3 | ||
1Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran | ||
2Department of Mathematics, Faculty of Sciences, University of Qom, Qom, Iran | ||
3Department of Mathematics and Computer Science, University of Qom, Qom, Iran | ||
تاریخ دریافت: 14 آبان 1400، تاریخ بازنگری: 15 دی 1400، تاریخ پذیرش: 01 بهمن 1400 | ||
چکیده | ||
In this paper, we study the nonsmooth multiobjective optimization problems with equilibrium constraints (MOMPEC). First, we extend the Guignard constraint qualification for MOMPEC, and then more constraint qualifications are developed. Also, the relationships between them are investigated. Moreover, we introduce the notion of primal Pareto stationarity and some dual Pareto stationarity concepts for a feasible point of MOMPEC. Some necessary optimality conditions are derived for any Pareto optimality solution of MOMPEC under weak assumptions. Indeed, we just need the objective functions to be locally Lipschitz. Further, we indicate our defined Pareto stationarity concepts are also sufficient conditions under the generalized convexity requirements. | ||
کلیدواژهها | ||
Equilibrium Constraints؛ Pareto Optimality؛ Constraint Qualifications؛ Upper Convexificator؛ Nonsmooth Optimization | ||
مراجع | ||
[1] A.A. Ardali, N. Movahedian and S. Nobakhtian, Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators, Optim. 65 (2014), 67–85. [2] A.A. Ardali, N. Movahedian and S. Nobakhtian, Optimality conditions for nonsmooth equilibrium problems via Hadamard directional derivative, Set-Valued Var. Anal. 24 (2016), 483–497.[3] J.M. Borwein and A.S. Lewis, Convex analysis and nonlinear optimization: Theory and examples, Springer-Verlag, New York, 2010. [4] V.F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential, J. Glob. Optim. 10 (1997), 305–326. [5] V.F. Demyanov, Convexification and concavification of a positively homogenous function by the same family of linear functions, Report 3, 208, 802. Universita di Pisa, 1994. [6] J. Dutta and S. Chandra, Convexificators, generalized convexity and vector optimization, Optim. 53 (2004), 77–94. [7] M.L. Flegel, C. Kanzow, A Fritz John approach to first order optimality conditions for mathematical programs with equilibrium constraints, Optim. 52 (2003), 277–286. [8] ML. Flegel, C. Kanzow, On the Guignard constraint qualification for mathematical programs with equilibrium constraints, Optim. 54 (2005), 517–534. [9] V. Jeyakumar and D.T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators J. Optim. Theory Appl. 101 (1999), 599–621. [10] G.H. Lin, D.L. Zhang and Y.C. Liang, Stochastic multiobjective problems with complementarity constraints and applications in healthcare management, Eur. J. Oper. Res. 226 (2013), 461–470. [11] X.F. Li and J.Z. Zhang, Stronger Kuhn-Tucker type conditions in nonsmooth multiobjective optimization: Locally Lipschitz case, J. Optim. Theory Appl. 127 (2005), 367–388. [12] Z.Q. Luo, J.S. Pang and D. Ralph, Mathematical programs with equilibrium constraints, Cambridge University Press, Cambridge, 1996. [13] N. Movahedian and S. Nobakhtian, Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints, Nonlinear Anal. 72 (2010), 2694–2705. [14] B.S. Mordukhovich, Multiobjective optimization problems with equilibrium constraints, Math. Program. 117 (2009), 331–354. [15] B.S. Mordukhovich,Variational analysis and generalized differentiation, 330, Springer-Verlag, Berlin, 2006. [16] T. Maeda, Constraint qualifications in multiobjective optimization problems: Differentiable case, J. Optim. Theory Appl. 80 (1994), 483–500. [17] JV. Outrata, M. Ko´cvara and J. Zowe, Nonsmooth approach to optimization problems with equilibrium constraints, Nonconvex Optim. Appl. 28. Kluwer Academic Publishers, Dordrecht, 1998. [18] X. Wang and V. Jeykumar, A sharp lagrangian multiplier rule for nonsmooth mathematical programming problems involving equality constraints, SIAM J. Optim. 10 (2000), 1136–1148. [19] J.J. Ye, Necessary optimality conditions for multiobjective bilevel programs Math. Oper. Res. 36 (2011), 165–184. [20] J.J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl. 307 (2005), 350–369. [21] J.J. Ye and Q.J. Zhu, Multiobjective optimization problem with variational inequality constraints, Math. Program. 96 (2003), 139–160. [22] P. Zhang, J. Zhang, GH. Lin and X. Yang, Some kind of Pareto stationarity for multiobjective problems with equilibrium constraints, Optim. 68 (2019), 1245–1260. [23] P. Zhang, J. Zhang and G.H. Lin, Constraint qualifications and proper Pareto optimality conditions for multiobjective problems with equilibrium constraints J. Optim. Theory Appl. 176 (2018), 763–782. | ||
آمار تعداد مشاهده مقاله: 44,118 تعداد دریافت فایل اصل مقاله: 583 |