
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,874 |
تعداد دریافت فایل اصل مقاله | 7,656,353 |
New results for the best proximity pair in cone Riesz space | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 163، دوره 13، شماره 2، مهر 2022، صفحه 2037-2041 اصل مقاله (331.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.17721.1958 | ||
نویسندگان | ||
Ali Asghar Sarvari1؛ Hamid Mazaheri Tehrani* 2؛ Hamid Reza Khademzadeh3 | ||
1Computer Geometry and Dynamical Systems Laboratory, Yazd University, Yazd, Iran | ||
2Faculty of Mathematics, Yazd University, Yazd, Iran | ||
3Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran | ||
تاریخ دریافت: 14 فروردین 1398، تاریخ بازنگری: 09 اردیبهشت 1399، تاریخ پذیرش: 19 اردیبهشت 1399 | ||
چکیده | ||
In this paper, the best proximity pair problem is considered with a cone metric. the conditions for the existence and uniqueness of the best proximity pair problem is discussed by using interesting relationships in Riesz spaces. This problem is studied for $T$-absolutely direct sets. Also, given the conditions considered for this problem, it is shown for the cone cyclic contraction maps, the best proximity pair problem is uniquely solvable. | ||
کلیدواژهها | ||
The best proximity pair؛ Cone metric Riesz space؛ Order complete؛ Order convergence | ||
مراجع | ||
[1] D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006. [2] J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topology Appl. 156 (2009), no. 18, 2942–2948. [3] G. Birkhoff, Lattice theory, American Mathematical Society, Providence, R.I., 1979. [4] Shu Tao Chen, Xin He, and H. Hudzik, Monotonicity and best approximation in Banach lattices, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 5, 785–794. [5] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), no. 2, 1001–1006. [6] P. Foralewski, H. Hudzik, W. Kowalewski, and M. Wis l a, Monotonicity properties of Banach lattices and their applications: A survey, Ordered structures and applications, Trends Math., Birkh¨auser/Springer, Cham, 2016, pp. 203–232. [7] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95 (1998), no. 3, 353–368. [8] A. F. Kalton and J. Nigel, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. [9] H. R. Khademzadeh and H. Mazaheri, Monotonicity and the dominated farthest points problem in Banach lattice, Abstr. Appl. Anal. (2014), Art. ID 616989, 7.[10] N. S. Kukushkin, Increasing selections from increasing multifunctions, Order 30 (2013), no. 2, 541–555. [11] W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Approx. Theory 69 (1992), no. 2, 173–187. [12] P. Meyer-Nieberg, Banach lattices., Springer-Verlag, Berlin, 1991. [13] V. Sankar Raj and P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol. 10 (2009), no. 1, 21–28. [14] A. C. Zaanen, Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin, 1997. | ||
آمار تعداد مشاهده مقاله: 43,619 تعداد دریافت فایل اصل مقاله: 300 |