
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,920 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
Efficient quadrature methods for solving Hammerstein integral equations on the half-line | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 33، دوره 13، شماره 2، مهر 2022، صفحه 361-369 اصل مقاله (377.82 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.21812.2298 | ||
نویسندگان | ||
Fatima Hamani1؛ Azedine Rahmoune* 2 | ||
1Department of Mathematics, University of M'sila, 28000, Algeria | ||
2Department of Mathematics, University of Bordj Bou Arreridj, El Anasser, 34030, Algeria | ||
تاریخ دریافت: 23 آبان 1399، تاریخ پذیرش: 23 فروردین 1400 | ||
چکیده | ||
In this paper, we proposed two numerical methods to solve the nonlinear integral equations of Hammerstein type on the half line. By using a Sinc-Nyström method based on Single-Exponential (SE) and Double-Exponential (DE) transformations, the problem is converted into a nonlinear system of equations. We provided an error analysis of the proposed schemes and showed that these methods have exponential convergence rates. Finally, several numerical examples are given to show the effectiveness of the methods. | ||
کلیدواژهها | ||
Hammerstein integral equations؛ Half line؛ Sinc quadrature؛ Nyström method | ||
مراجع | ||
[1] N. Nahid, P. Das and G. Nelakanti, Projection and multi-projection methods for nonlinear integral equations on the half-line, J. Comp. Appl. Math. 359 (2019), 119–144. [2] N. Nahid and G. Nelakanti, Convergence analysis of Galerkin and multi Galerkin methods for linear integral equations on half-line using Laguerre polynomials, Comput. Appl. Math. 38 (2019), no. 182. [3] A. Rahmoune, Spectral collocation method for solving Fredholm integral equations on the half-line, J. App. Math. Comp. 219 (2013), no. 17, 9254–9260. [4] A. Rahmoune and A. Guechi, Sinc-Nystrom methods for Fredholm integral equations of the second kind over infinite intervals, Appl. Numer. Math. 157 (2020), 579-–589. [5] A. Rahmoune, On the numerical solution of integral equations of the second kind over infinite intervals, J. Appl. Math. Comput. 2020 (2020), 1–20. [6] F. Stenger, Numerical methods based on sinc and analytic functions, 1st Edition, Springer-Verlag, New York, 1993. [7] H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Pub. Res. Inst. Math. Sci. 9 (1974), 721–741. [8] K. Tanaka, M. Sugihara, K. Murota and M. Mori, Function classes for double exponential integration formulas, Numer. Math. 111 (2009), 631–655. [9] Y. Weiss, On the approximation of fixed points of nonlinear compact operators, SIAM. J. Numer. Anal. 11 (1974), 550–553. | ||
آمار تعداد مشاهده مقاله: 44,344 تعداد دریافت فایل اصل مقاله: 537 |