
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,935 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
Dissipation coefficient from low-momentum and pole contribution warm inflation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 145، دوره 13، شماره 2، مهر 2022، صفحه 1811-1820 اصل مقاله (519.39 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25558.3054 | ||
نویسندگان | ||
Terife Haddad* 1؛ Khaled Saeidi2؛ Mohammad Vahid Takook1 | ||
1Department of Physics, Faculty of Science, Razi University, Kermanshah 6714967346, Iran | ||
2Department of Physics, Faculty of Science, University of Kurdistan, Pasdaran St. P. O Box 66177-15175, Iran | ||
تاریخ دریافت: 13 آبان 1400، تاریخ بازنگری: 26 آذر 1400، تاریخ پذیرش: 11 دی 1400 | ||
چکیده | ||
The conventional models of warm inflation include the two-stage field interaction mechanism where the inflation field interacts with other intermediate fields (bosonic and fermionic fields), which are coupled with other fields themselves. These heavy intermediate fields decay to light degrees of freedom. During these two-stage renormalizable interactions under adiabatic conditions and close to the thermal equilibrium state, the dissipative effects are produced and cause alterations in the inflationary dynamics. Interaction between the inflation, intermediate and radiation fields lead to the formation of a thermal bath during inflation, and therefore the effect of thermal and radiative corrections should also be addressed. In this work, by focusing on the regime in which the intermediate field mass is greater than temperature, a relationship is obtained for the dissipation coefficient based on the super-symmetric and numerical calculation models, which is originated from both real and virtual modes of the intermediate field. Moreover, it is indicated that the contribution of on-shell modes decay to the bosonic and fermionic radiation fields is more than expected. It is also demonstrated that there are strong dissipative effects in the validity range of a perturbative analysis. | ||
کلیدواژهها | ||
warm inflation؛ dissipation coefficients؛ on-shell and off-shell modes | ||
مراجع | ||
[1] M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009), no. 12, 2207–2240. [2] M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D 84 (2011), no. 10, 103503. [3] A. Berera, Warm inflation at arbitrary adiabaticity: A model, an existence proof for inflationary dynamics in quantum field theory, Nucl. Phys. B 585 (2000), 666. [4] A. Berera, Thermal properties of an inflationary universe, Phys. Rev. D 54 (2001), 2519. [5] A. Berera and L.Z. Fang, Thermally induced density perturbation in the inflation era, Phys. Rev. Lett. 74 (1995), 1912–1915. [6] A. Berera, M. Gleiser, R.O. Ramos, Strong dissipative behavior in quantum field theory, Phys. Rev. D 58 (1998), no. 12, 123508. [7] A. Berera and T.W. Kephart, The ubiquitous inflation in string-inspired models, Phys. Rev. Lett. 83 (1999), no. 6, 1084. [8] A. Berera and R.O. Ramos, Dynamics of intetacting scalar fields in expanding space-time, Phys. Rev. D 71 (2005), no. 2, 023513. [9] D. Boyanovsky, H.J. de Vega, R. Holman, D.S. Lee and A. Singh, Dissipation via particle production in scalar field theorise, Phys. Rev. D 51 (1995), no. 8, 4419. [10] D. Boyanovsky, R. Holman and S.P. Kumar, Inflaton decay in De Sitter space-time, Phys. Rev. D 56 (1997), no. 4, 1958. [11] B. Chen, Y. Wang and W. Xue, Inflationary non Gaussianity from thermal fluctuations, J. Cosmol. Astro. Phys. 2008 (2008), no. 5, 014. [12] E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994), 6410. [13] L.Z. Fang, Entropy generation in the early universe by dissipative processes near the Higgs phase transition, Phys. Lett. B 95 (1999), 154–156. [14] S. Gupta, A. Berera, A.F. Heavens and S. Matarrese, Non-Gaussian signature in the cosmic background radiation from warm infalation, Phys. Rev D 66 (2002), 0205152. [15] A.H. Guth, The inflation universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1982), 347. [16] M. Gleiser and R.O. Ramos, Microphysical approach to nonequilibrium dynamics of quantum fields, Phys. Rev. D 50 (1994), no. 4, 2441. [17] L.M.H. Hall, I.G. Moss and A. Berera, Scalar perturbation spectra from warm inflation, Phys. Rev. D. 69 (2004), 083525. [18] R. Herrera and M. Olivares, Warm-Logamediate inflationary universe model, Int. J. Mod. Phys. D 21 (2012), no. 5, 1250047. [19] A. Hosoya and M. Sakagami, Time development Of Higgs filed at finite temperature, Phys. Rev. D 29 (1984), no. 10, 2228. [20] B.L. Hu, J.P. Paz and Y. Zhang, The origin of structure in the universe, Edited by E. Gunzing and P. Nardone, Kluwer, Dordrecht, 1993. [21] I.D. Lawrie, Perturbative nonequilibrium dynamics of phase transitions in an expanding universe, Phys. D 60 (1999), no. 6, 063510.[22] D. Lee and D. Boyanovsky, Dynamics of phase transitions induced by a heat bath, Nucl. Phys. B 406 (1993), no. 3, 631–654. [23] A.D. Linde, Hybrid inflation, Phys. Rev. D 49 (1994), 748. [24] H. Mishra, S. Mohanty and A. Nautiyal, Warm natural inflation, Phys. Lett. B 710 (2015), 254. [25] M. Morikawa, Classical fluctuations in dissipative quantum systems, Phys. Rev. D 33 (1986), no. 12, 3607. [26] M. Morikawa and M. Sasaki, Entropy production in an expanding universe, Phys. Lett. B 165 (1985), no. 1-3, 59–62. [27] I. G. Moss and C. Xiong, Non-Gaussianity in fluctuation from warm inflation, J. Cosmol. Astro. Phys. 2007 (2007), no. 4, 007. [28] I.G. Moss and C. Xiong, On the consistency of warm inflation, J. Cosmol. Astro. Phys. 2008 (2008), no. 11, 0811–023. [29] I.G. Moss and T.Yeomans, Non-gaussianity in the strong regime of warm inflation, J. Cosmol. Astro. Phys. 2011 (2011), no. 8, 009. [30] A. Ringwald, Evolution equation for the expectation value of a scalar field in spatially flat RW universes, Ann. Phys. 177 (1987), no. 1 129–166. [31] A.N. Taylor and A. Berera, Perturbation spectra in the warm inflationary scenario, Phys. Rev. D 62 (2000), 83517. [32] J. Yokoyama and A.D. Lide, Is warm inflation possible?, Phys. Rev. D 60 (1999), 980–940. | ||
آمار تعداد مشاهده مقاله: 44,200 تعداد دریافت فایل اصل مقاله: 272 |