
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,825 |
تعداد دریافت فایل اصل مقاله | 7,656,339 |
Selberg and refinement type inequalities on semi-Hilbertian spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 98، دوره 13، شماره 2، مهر 2022، صفحه 1201-1206 اصل مقاله (358.15 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22217.2338 | ||
نویسندگان | ||
Iz-iddine El-Fassi* 1؛ Abdellatif Chahbi2؛ Samir Kabbaj3 | ||
1Department of Mathematics, Faculty of Sciences and Techniques, S. M. Ben Abdellah University, Fez, Morocco | ||
2Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco | ||
3Department of Mathematics, Faculty of Sciences, Ibn Tofai University, Kenitra, Morocco | ||
تاریخ دریافت: 07 دی 1399، تاریخ بازنگری: 11 دی 1399، تاریخ پذیرش: 23 فروردین 1400 | ||
چکیده | ||
In this paper, we will study a type and refinement of Selberg type inequalities on semi-Hilbertian spaces, which is a simultaneous extension of the Bombieri type inequality in a semi-Hilbertian space. As applications, we give some examples of the Selberg inequality and its refinement on semi-Hilbertian spaces. | ||
کلیدواژهها | ||
Selberg’s inequality؛ Semi inner products؛ operators algebra | ||
مراجع | ||
[1] M.L. Arias, G. Corach and M.C. Gonzalez, Metric properties of projections in semi Hilbertian spaces, Integral Equations and Operators Theory 62 (2008), 11–28. [2] E. Bombieri, A note on the large sieve, Acta Arith. 18 (1971), 401–404.[3] H.G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bull. Amer. Math. Soc. 7 (1982), 553–589. [4] S.S. Dragomir, On the Boas-Belman in inner product spaces, arXiv:math/0307132v1 [math.CA] 9 Jul 2003 Aletheia University. [5] P. Erdos, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Scis. USA. 35 (1949), 374–384. [6] M. Fujii, Selberg inequality, ”http://www.kurims.kyoto-u.ac.jp/∼ kyodo/ kokyuroku /contents/ pdf/0743-07.pdf”,(1991), 70–76. [7] M. Fujii and R. Nakamoto, Simultaneous Extensions of Selberg inequality and Heinz-Kato-Furuta inequality, Nihonkai Math. J. 9 (1998), 219–225. [8] T. Furuta, When does the equality of a generalized Selbery inequality hold ?, Nihonkai Math. J. 2 (1991), 25–29. [9] J. Hadamard, Sur la distribution des z´eros de la fonction zeta et ses cons´equences arithm´etiques, Bull. Soc. Math. France 24 (1896), 199–220. [10] H. Heilbronn, On the averages of some arithmetical functions of two variables, Mathematica 5 (1958), 1-7. [11] J.E. Pecaric, On some classical inequalities in unitary spaces, Mat. Bilten (Scopje) 16 (1992), 63–72. [12] A. Selberg, An elementary proof of the prime number theorem, Ann. Math. 50 (1949), 305–313. [13] J.J. Sylvester, On Tchebychef theorem of the totality of prime numbers comprised within given limits, Amer. J. Math. 4 (1881), 230–247. | ||
آمار تعداد مشاهده مقاله: 44,161 تعداد دریافت فایل اصل مقاله: 365 |