
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
On the convergence of new algorithms procedures in Banach spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 86، دوره 13، شماره 2، مهر 2022، صفحه 1033-1040 اصل مقاله (346.53 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6386 | ||
نویسندگان | ||
Noor N. Salem؛ Zena H. Maibed* | ||
College of Education for Pure Science, Ibn Al-Haithem Department of Mathematics, Iraq | ||
تاریخ دریافت: 18 دی 1400، تاریخ بازنگری: 29 بهمن 1400، تاریخ پذیرش: 29 اسفند 1400 | ||
چکیده | ||
In this paper, a new algorithms type three-step via projection Jungck Suzuki generalized mappings are introduced, and the convergence of projection Jungck- Zenor algorithm and projection Jungck P-algorithm are proved. On the other hand, we proved that the projection Jungck-Zenor algorithm converges to a common fixed point faster than of projection Jungck P- algorithm in Banach spaces. | ||
کلیدواژهها | ||
projection Mappings؛ Jungck algorithms؛ Rate of convergence | ||
مراجع | ||
[1] M. Agarwal, R. Chugh and S. Kumar, Stability and convergence of Jungck modified S–iterative procedures, Int. J. Engin. [2] R.P. Agarwal, D. Oregan and D.R. Sahu, Fixed point theory for Lipschitzian- type mapping with applications, Springer, New York, 2009. [3] M. Aslam and A. Bnouhachem, On an iterative algorithm for general variational inequalities, Appl. Math. Comput. 185 (2007), 155–168. [4] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math. 3 (1922), 133–181. [5] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl. 2 (2004), 97–105. [6] L.E.J. Brouwer, Uber abbildungen Von mannigfaltigke item, Math. Ann. 71 (1912), 97–115. [7] S. Dhompongsa and A. Kaewcharoen, Fixed point theorems for nonexpansive mapping and Suzuki-generalized nonexpansive mappings on a Banach lattice, Nonlinear Anal. Theory Meth. Appl. A 71 (2009), no. 11, 5344–5353. [8] S. Dhompongsa, W. Inthakon and A. Kaewkho, Edelstein’s method and fixed point theorems for some generalized nonexpansive mapping, J. Math. Anal. Appl. 350 (2009), no. 1, 12–17. [9] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), no. 1, 147–150. [10] G. Jungck, Commuting mapping and Fixed point, Amer. Math. Month. 83 (1976), no. 4, 261–263. [11] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. [12] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), no. 1, 217–229. [13] M.A. Noor, Three-step iterative algorithms for multivalued quasi-variational inclusions, J. Math. Anal. Appl. 225 (2001), 589–604. [14] P. Sainuan, Rate of Convergence of P-iteration and S-iteration for continuous functions on closed intervals, Thai J. Math. 13 (2015), no. 2, 449–457. [15] N. Shahzad and G. Bassindowa, Fixed point theorems for nonexpansive mapping and Suzuki-generalized nonexpansive mappings with applications, J. Nonlinear Convex Anal. 13 (2012), no. 4, 657–666. [16] T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semi groups without Bochner integrals, J. Math. Anal. 305 (2005), 227–239. [17] T. Suzuki, Moudafi’s viscosity approximation with Meir-Keeler contraction, J. Math. Anal. Appl. 325 (2007), 342–352. [18] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mapping, J. Math. Anal. Appl. 340 (2008), 1088–1095. | ||
آمار تعداد مشاهده مقاله: 43,815 تعداد دریافت فایل اصل مقاله: 407 |