
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,781 |
تعداد دریافت فایل اصل مقاله | 7,656,192 |
Estimation on initial coefficient bounds of generalized subclasses of bi-univalent functions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 82، دوره 13، شماره 2، مهر 2022، صفحه 989-997 اصل مقاله (460.66 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.23092.2613 | ||
نویسندگان | ||
Ranjan Suresh Khatu* 1؛ Uday H. Naik2؛ Amol B. Patil3 | ||
1Department of Mathematics, Arts, Commerce and Science College, Lanja-416701, India | ||
2Department of Mathematics, Willingdon College, Sangli-416415, India | ||
3Department of First Year Engineering, AISSMS College of Engineering, Pune-411001, India | ||
تاریخ دریافت: 06 تیر 1400، تاریخ بازنگری: 06 بهمن 1400، تاریخ پذیرش: 17 بهمن 1400 | ||
چکیده | ||
In the present investigation, we introduce the two subclasses $S^{\alpha}_{\Sigma}(\gamma, \rho, \lambda, \mu, \xi, \delta)$ and $S_{\Sigma}(\gamma, \rho, \lambda, \mu, \xi, \delta;\beta)$ of normalized analytic bi-univalent functions defined in the open unit disk and associated with the Ruscheweyh's operator. Further, we obtain bounds for the second and third Taylor-Maclaurin coefficients of the functions belong to these subclasses. We also provide relevant connections with earlier investigations of other researchers. | ||
کلیدواژهها | ||
Analytic function؛ Univalent function؛ Convolution؛ Coefficient bounds؛ Bi-univalent function | ||
مراجع | ||
[1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351. [2] D.A. Brannan and J.G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, Academic Press, New York and London, 1980. [3] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (2016), no. 6, 1567–1575. [4] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, 1983. [5] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hact. J. Math. Stat. 43 (2014), no. 3, 383–389. [6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569–1573. [7] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. [8] N. Magesh and J. Yamini, Coefficient bounds for a certain subclasses of bi-univalent functions, Int. Math. Forum 8 (2013), no. 27, 1337–1344. [9] G. Murugusundaramoorthy, N. Mangesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages. [10] U.H. Naik and A.B. Patil, On initial coefficient inequalities for certain new subclasses of bi-univalent functions, J. Egyptian Math. Soc. 25 (2017), no. 3, 291–293. [11] E. Netanyahu, The minimal distance of the image boundary for the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112. [12] A.B. Patil and U.H. Naik, Estimates on initial coefficients of certain subclasses of bi-univalent functions associated with Al-Oboudi differential operator, J. Indian Math. Soc. 84 (2017), no. 1-2, 73–80. [13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115. [14] S.A. Saleh, A.H. El-Qadeem and M.A. Mamon, Some estimation about Tayler-Maclaurin coefficients of generalized subclasses of bi-univalent functions, Tbilisi Math. J. 13 (2020), no. 4, 23–32. [15] H.M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2016), no. 5-6, 693–706. [16] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188–1192. [17] H.M. Srivastava, G. Murugusundaramoorthy and N. Mangesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal. 1 (2013), no. 2, 67–73. [18] B. Srutha Keerthi and B. Raja, Coefficient inequality for certain new subclasses of analytic bi-univalent functions, Abstr. Appl. Anal. 3 (2013), no. 1, 1–10. [19] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994. | ||
آمار تعداد مشاهده مقاله: 44,261 تعداد دریافت فایل اصل مقاله: 457 |