
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,972 |
تعداد دریافت فایل اصل مقاله | 7,656,410 |
Some results in metric modular spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 81، دوره 13، شماره 2، مهر 2022، صفحه 983-988 اصل مقاله (370.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25676.3091 | ||
نویسندگان | ||
Somaye Grailoo* 1؛ Abasalt Bodaghi2؛ Abolfazl Niazi Motlagh3 | ||
1Esfarayen University of Technology, Esfarayen, North Khorasan, Iran | ||
2Department of Mathematics, West Tehran Branch, Islamic Azad University, Tehran , Iran | ||
3Department of Mathematics, Faculty of Basic Science, Univercity of Bojnord, P. O. Box 1339, Bojnord, Iran | ||
تاریخ دریافت: 03 دی 1400، تاریخ بازنگری: 15 اسفند 1400، تاریخ پذیرش: 22 اسفند 1400 | ||
چکیده | ||
A metric modular on a set $X$ is a function $w : (0,\infty)\times X\times X\longrightarrow [0,\infty]$ written as $(\lambda,x,y)\mapsto w_{\lambda}(x,y)$ satisfying, for all $x, y, z\in X$, the following three properties: $x = y$ if and only if $w_{\lambda}(x, y) = 0$ for all $\lambda>0$; $w_{\lambda}(x, y) = w_{\lambda}(y, x)$ for all $\lambda>0$; $w_{\lambda+\mu}(x, y) \leq w_{\lambda}(x, z) + w_{\mu}(y, z)$ for all $\lambda, \mu>0$. In this paper we define a Hausdorff topology on metric modular spaces and prove some known results of metric spaces including Baire's theorem and Uniform limit theorem for metric modular spaces. | ||
کلیدواژهها | ||
modular؛ metric modular؛ Baire’s theorem؛ Uniform limit theorem | ||
مراجع | ||
[1] H. Abobakr and R.A. Ryan, Modular Metric Spaces, Irish Math. Soc. Bull. 80 (2017), 35–44. [2] V. Chistyakov, Metric modulars and their application, Dokl. Akad. Nauk. 406 (2006), no. 2, 165–168. [3] V. Chistyakov, Modular metric spaces. I. Basic concepts, Nonlinear Anal. 72 (2010), no. 1, 1–14. [4] H. Hosseinzadeh and V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-European J. Math. 13 (2020), no. 05, 2050087. [5] M.A. Khamsi, A convexity property in modular function spaces, Math. Japon. 44 (1996), no. 2, 269–279. [6] W.M. Kozlowski, Modular function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 122, Marcel Dekker, Inc., New York, 1988. [7] M. Krbec, Modular interpolation spaces, I. Z. Anal. Anwend. 1 (1982), 25–40. [8] W.A.J. Luxemburg, Banach function spaces, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1955. [9] L. Maligranda, Orlicz spaces and interpolation. Semin. Math., 5, Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989. [10] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97–119. [11] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65. [12] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Sr. Math. Astron. Phys. 7 (1959), 661–668. [13] H. Nakano, Modulared Semi-Ordered Linear Spaces, Tokyo Math. Book Ser., 1, Maruzen Co., Tokyo, 1950. [14] H. Nakano, Topology and Linear Topological Spaces, Tokyo Math. Book Ser., 3, Maruzen Co., Tokyo, 1951. [15] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950. [16] W. Orlicz, Collected Papers, vols. I, II. PWN, Warszawa, 1988. [17] C. Park, J.M. Rasias, A. Bodaghi and S.O. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, RACSAM 113 (2019), 2175–2188. | ||
آمار تعداد مشاهده مقاله: 43,689 تعداد دریافت فایل اصل مقاله: 668 |