
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,940 |
تعداد دریافت فایل اصل مقاله | 7,656,398 |
A study on dependent impulsive integro-differential evolution equations of general type in Banach space | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 69، دوره 13، شماره 2، مهر 2022، صفحه 815-827 اصل مقاله (470.21 K) | ||
نوع مقاله: Special issue editorial | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.20585.2177 | ||
نویسندگان | ||
Abdelati El Allaoui* 1؛ Said Melliani2؛ Lalla Saadia Chadli2؛ JinRong Wang3 | ||
1MISCOM, National School of Applied Sciences, Cadi Ayyad University, Safi, Morocco | ||
2Laboratory of Applied Mathematics and Scientific Calculus, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco | ||
3Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China | ||
تاریخ دریافت: 21 خرداد 1399، تاریخ بازنگری: 11 تیر 1399، تاریخ پذیرش: 01 شهریور 1399 | ||
چکیده | ||
This paper deals with the study of a coupled system of generalized impulsive integro-differential evolution equations with periodic boundary value. We show the existence and uniqueness of the solution for the proposed problem using Banach fixed point theorem. Another way was used to show the existence result with the aim of breaking out of the widely used Theorems style, we take advantage Monch's fixed point theorem using a non-compactness measure that we introduced. Some examples are given to our obtained results. | ||
کلیدواژهها | ||
Boundary conditions؛ Evolution equations؛ Integro-differential equation؛ Existence؛ Impulses؛ Mesure of noncampactness | ||
مراجع | ||
[1] M. Alpha Diallo, K. Ezzinbi and A. Sene, Impulsive integro-differential equations with nonlocal conditions in Banach spaces, Trans. A. Razmadze Math. Instit. 171 (2017), 304–315. [2] D.D. Bainov and P.S. Simeonov, Impulsive differential equations: Periodic solutions and applications, Longman Scientific and Technical, New York, 1993. [3] M. Dieye, M.A. Diop, K. Ezzinbi and H. Hmoyed, On the existence of mild solutions for nonlocal impulsive integrodifferential equations in Banach spaces, Le Mat. LXXIV (2019), no. 1, 13-–34. [4] Drumi Bainov, Zdzislaw Kamont, Emil Minchev, Periodic boundary value problem for impulsive hyperbolic partial differential equations of first order, Appl. Math. Comput. 68 (1995), no. 2-3, 95–104. [5] A. El Allaoui, Y. Allaoui, S. Melliani and L.S. Chadli, Coupled system of mixed hybrid differential equations: linear perturbation of first and second type, J. Univer. Math., 1 (2018), no. 1, 24–31. [6] M. Feckan and J.R. Wang, A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal. 46 (2015), 915-934. [7] E. Hernandez, O’Regan D., On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc. 141 (2013), 641–649. [8] J.H. Liu, Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst. 6 (1999), no. 1, 77–85. [9] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, Berlin, 1983. [10] M. Pierri, D. O’Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput. 219 (2013), 6743–6749. [11] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995. [12] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. [13] S. Melliani, L.S. Chadli and A. El Allaoui, Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces, Int. J. Nonlinear Anal. Appl. 8 (2017), no. 1, 301–314. [14] S. Melliani, A. El Allaoui and L.S. Chadli, A general class of periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces, Adv. Differ. Equ. 2016 (2016), no. 1, 1–13. [15] H. M¨onch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), no. 5, 985—999. [16] J.R. Wang, M. Feckan and Y. Zhou, Noninstantaneous impulsive models for studying periodic evolution processes in pharmacotherapy, Mathematical Modeling and Applications in Nonlinear Dynamics. Springer, Cham, 2016, 87–107. [17] W. Wei, X. Xiang and Y. Peng, Nonlinear impulsive integro-differential equations of mixed type and optimal controls, Optim. 55 (2006), 141–156. [18] X. Yu and J.R. Wang, Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces, Commun. Nonlinear Sci. Nume. Simul. 22 (2015), 980–989. [19] L. Zhu and Q. Huang, Nonlinear impulsive evolution equations with nonlocal conditions and optimal controls, Adv. Differ. Equ. 2015 (2015), no. 1, 1–12. | ||
آمار تعداد مشاهده مقاله: 44,021 تعداد دریافت فایل اصل مقاله: 334 |