
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,935 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
Banach fixed point theorem on incomplete orthogonal S-metric spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 13، دوره 14، شماره 2، اردیبهشت 2023، صفحه 151-157 اصل مقاله (347.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22054.2322 | ||
نویسندگان | ||
Zeinab Eivazi Damirchi Darsi Olia1؛ Madjid Eshaghi* 2؛ Davood Ebrahimi Bagha3 | ||
1Departmen of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2Department of Mathematics, Semnan University, Semnan, Iran | ||
3Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
تاریخ دریافت: 19 آذر 1399، تاریخ بازنگری: 10 دی 1399، تاریخ پذیرش: 21 آبان 1400 | ||
چکیده | ||
In this paper, we are interested in obtaining fixed point theorem for mappings in S-metric space by wearing the completeness of S-metric space using relations. As consequences, an application to existence and uniqueness of solution of integral equation is given. | ||
کلیدواژهها | ||
Relation؛ fixed point؛ S-metric spaces | ||
مراجع | ||
[1] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: their relation to the axiom of choice and a generalized fixed point theorem, J. Fixed Point Theory Appl. 18 (2016), no. 3, 465–477.
[2] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), no. 2, 569–578. [3] M. Eshaghi and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebr. 6 (2017), no. 3, 251–260. [4] M. Eshaghi, H. Habibi and M. B. Sahabi, Orthogonal sets; orthogonal contractions, Asian-European J. Math. 12 (2019), no. 3, 1950034. [5] M. Eshaghi and H. Habibi, Existence and uniqueness of solutions to a first-order differential equation via fixed point theorem in orthogonal metric space,Facta Univ. Ser. Math. Inf. 34 (2019), 123–135. [6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297. [7] Z. Mustafa, H. Obiedat and F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870. [8] Z. Mustafa and B. Sims, Some results concerning D-metric spaces, Proc. Int. Conf. Fixed Point Theory Appl. Valencia, Spain, 2003, pp. 189–198.
[9] N.Y. Ozgur and N.Tas, Some fixed theorems on s-metric spaces, Mat. Vesnik. 69 (2017), no. 1, 39–52. [10] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in s-metric spaces, Mat. Vesnik. 64 (2012), no. 3, 258–266. [11] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D∗ -metric spaces, Fixed Point Theory Appl. 2007 (2007), Article ID 27906, 13 pages. [12] M. Ramezani and H. Baghani, The Meir–Keeler fixed point theorem in incomplete modular spaces with application, J. Fixed Point Theory Appl. 19 (2017), no. 4, 2369–2382. [13] A. Bahraini, G. Askari, M. Eshaghi Gordji and R. Gholami, Stability and hyperstability of orthogonally ∗ mhomomorphisms in orthogonally Lie C∗-algebras: a fixed point approach, J. Fixed Point Theory Appl. 20 (2018), no. 2, 1- 12. [14] M. Ramezani and H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl. 8 (2017), no. 2, 23–28. [15] M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl. 6 (2015), no. 2, 127–132. | ||
آمار تعداد مشاهده مقاله: 16,531 تعداد دریافت فایل اصل مقاله: 436 |