
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,915 |
تعداد دریافت فایل اصل مقاله | 7,656,369 |
Solving quadratic programming problem via dynamic programming approach | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 42، دوره 13، شماره 2، مهر 2022، صفحه 473-478 اصل مقاله (325.77 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.25640.3072 | ||
نویسندگان | ||
Naghada S. Saber* ؛ Nejmaddin A. Sulaiman | ||
Department of Mathematics, College of Education, Salahaddin University-Erbil, Iraq | ||
تاریخ دریافت: 14 مهر 1400، تاریخ بازنگری: 28 آذر 1400، تاریخ پذیرش: 01 دی 1400 | ||
چکیده | ||
In this paper, we define the dynamic programming approach to solve quadratic programming problem when the objective function can be written as the product of two linear factors with single linear constraint. An algorithm is proposed for solving such problems, we also solved the problems by simplex method to obtained the exact solution as dynamic programming technique. To demonstrate our proposed method, numerical examples are also illustrated | ||
کلیدواژهها | ||
Quadratic Programming Problem؛ Dynamic Programming Approach؛ Optimal Solution | ||
مراجع | ||
[1] A. Gupta and J. Sharma, A generalized simplex technique for solving quadratic-programming problem, Indian J. Technol. 21 (1983), no. 5, 198–201. [2] M.B. Hasan, A technique for solving special type quadratic programming problems, Dhaka Univ. J. Sci. 60 (2012), no. 2, 209–215. [3] M. Jayalakshmi and P. Pandian, A method for solving quadratic programming problems having linearly factorized objective function, Int. J. Modern Engin. Res. 4 (2014), 20–24. [4] R, Mitze and M. Monnigmann, A dynamic programming approach to solving constrained linear–quadratic optimal control problems, Automatica 120 (2020), 109–132. [5] N. Ozdemir and F. Evirgen, A dynamic system approach to quadratic programming problems with penalty method, Bull. Malay. Math. Sci. Soc. 33 (2010), no. 1, 79–91. [6] S.D. Sharma, Nonlinear and Dynamic Programming, Kedar Nath Ram Nath and CO., Meerut, India. 1980. [7] Z.I. Sohag, and M. Asadujjaman, A proposed method for solving quasi-concave quadratic programming problems by multi-objective technique with computer algebra, IOSR J. Math. 15 (2019), no. 1, 12–18. [8] A. Sulaiman and A.Q. Hamadameen, Optimal transformation technique to solve multi-objective linear programming problem (MOLPP), Kirkuk Univ. J. Sci. Stud. 3 (2008), no. 2, 96–106. [9] N. Suleiman and M. Nawkhass, Transforming and solving multi-objective quadratic fractional programming problems by optimal average of maximin & minimax techniques, Amer. J. Oper. Res. 3 (2013), no. 3, 92–98. [10] N. Suleiman and M. Nawkhass, A new modified simplex method to solve quadratic fractional programming problem and compared it to a traditional simplex method by using pseudoaffinity of quadratic fractional functions, Appl. Math. Sci. 7 (2013), no. 76, 3749–3764. [11] K. Swarup, Quadratic programming, CCERO (Belgium) 8 (1966), no. 2, 132–136. [12] P. Wolfe, The simplex method for quadratic programming, Econometrica J. Econ. Soc. 27 (1959), no. 3, 382–398. | ||
آمار تعداد مشاهده مقاله: 43,876 تعداد دریافت فایل اصل مقاله: 1,181 |