
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,862 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
Toeplitz-plus-Hankel matrices with perturbed corners | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 244، دوره 13، شماره 2، مهر 2022، صفحه 3057-3072 اصل مقاله (650.39 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.20564.2171 | ||
نویسنده | ||
Maryam Shams Solary* | ||
Assistant Professor of Applied Mathematics, Payame Noor University, Po Box 19395-3697 Tehran, IRAN | ||
تاریخ دریافت: 18 خرداد 1399، تاریخ بازنگری: 17 فروردین 1401، تاریخ پذیرش: 05 اردیبهشت 1401 | ||
چکیده | ||
This paper examines suitable borderings and modification techniques for finding some special properties of a class of real heptadiagonal symmetric Toeplitz matrices and anti-heptadiagonal persymmetric Hankel matrices with perturbed corners as the zeros of explicit rational functions. An orthogonal diagonalization, inverse and determinant, and a formula to compute its integer powers for these matrices are shown. Then, these results are expanded for the corresponding Toeplitz-plus-Hankel matrices with perturbed corners. | ||
کلیدواژهها | ||
Eigenvalues؛ Eigenvectors؛ determinant matrix | ||
مراجع | ||
[1] D. Bini and M. Capovani, Sepctral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl. 52/53 (1983), 99–126. [2] D. Bini and M. Capovaui, Tensor rank and border rank of band Toeplitz matrices, SIAM J. Comput. 16 (1987), no. 2, 252–258. [3] J.R. Bunch, C.P. Nielsen and D.C. Sorensen, Rank-one modification of the symmetric eigenproblem, Numer. Math. 31 (1978), 31–48. [4] D. Fasino, Spectral and structural properties of some pentadiagonal symmetric matrices, Calcolo 25 (1988), no. 4, 301–310. [5] M. Fiedler, Bounds for the determinant of the sum of Hermitian matrices, Proc. Amer. Math. Soc. 30 (1971), no. 4, 27–31. [6] G.H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973), no. 2, 318–334. [7] D.A. Harville, Matrix algebra from a statistician’s perspective, Springer-Verlag, New York, 1997. [8] C. R. Johnson and R. A. Horn, Topics in matrix analysis, Cambridge University Press, 1991. [9] R.A. Horn and C.R. Johnson, Matrix analysis, second ed. Cambridge University Press, 2013. [10] J. Lita da Silva, On anti-pentadiagonal persymmetric Hankel matrices with perturbed corners, Comput. Math. Appl. 72 (2016), 415–426. [11] M. Shams Solary, Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices, J. Math. Anal. Appl. 402 (2013), 719–730. [12] M. Shams Solary, Computational properties of pentadiagonal and anti-pentadiagonal block band matrices with perturbed corners, Soft Comput. 24 (2020), 301–309. [13] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford U. P. London, 1965. | ||
آمار تعداد مشاهده مقاله: 43,924 تعداد دریافت فایل اصل مقاله: 382 |