
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,824 |
تعداد دریافت فایل اصل مقاله | 7,656,336 |
On some numerical methods for solving large-scale differential T-Lyapunov matrix equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 51، دوره 13، شماره 2، مهر 2022، صفحه 577-590 اصل مقاله (519.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.21859.2300 | ||
نویسندگان | ||
Lakhlifa Sadek* ؛ Hamad Talibi Alaoui | ||
Department of Mathematics, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco | ||
تاریخ دریافت: 29 شهریور 1399، تاریخ بازنگری: 29 آبان 1399، تاریخ پذیرش: 08 آذر 1399 | ||
چکیده | ||
In this paper, we present two new approaches to solve large-scale differential T-Lyapunov equations. The first one is based on the extended block Krylov subspaces, and the second is based on the extended global Krylov subspaces, using the first projection of the initial problem onto an extended block (or global) Krylov subspaces to get a small-scale differential T-Lyapunov equation. The latter problem is resolved by iterative methods (Rosenbrock or BDF method), then the obtained solution is used to create a low-rank approximate solution of the original problem. This process is being replicated, which increases the dimension of the projection space until some planned accuracy is achieved. We give some new theoretical results and numerical experiments then we compare the new approaches. | ||
کلیدواژهها | ||
Extended block Krylov؛ Extended global Krylov؛ Low-rank؛ Krylov method؛ Differential T-Lyapunov equation؛ T-Lyapunov equation؛ T-Sylvester equation, Rosenbrock method؛ BDF method | ||
مراجع | ||
[1] H. Abou-Kandil, G. Frelling, V. Ionescu and G. Jank, Matrix Riccati equations in control and systems theory, Systems and Control Foundations and Applications, Birkh¨auser Basel, 2003. [2] A.H. Bentbib, K. Jbilou and El. M. Sadek, On some extended block Krylov-based methods for large scale nonsymmetric Stein matrix equations, Math. 5 (2017), 21. [3] R. Bouyouli, K. Jbilou, R. Sadaka and H. Sadok, Convergence properties of some block Krylov subspace methods for multiple linear systems, J. Comput. Appl. Math. 196 (2006), 498–511. [4] J.C. Butcher, Numerical methods for ordinary differential equations, John Wiley and Sons, 2008. [5] B.N. Datta, Numerical methods for linear control systems design and analysis, Elsevier Academic Press, 2003. [6] T. Davis, The University of Florida Sparse Matrix Collection, NA Digest, 97 (1997), 23, Available online: http://www.cise.ufl.edu/research/sparse/matrices, (Accessed on June, 10, 2016). [7] f. Dopico, J. Gonzalez, D. Kressner and V. Simoncini, Projection methods for large-scale T-Sylvester equations, Math. Comput. 85 (2016), no. 301, 2427–2455. [8] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl. 19 (1998), no. 3, 7551–7771. [9] Hached M. Jbilou. K. Numerical solutions to large-scale differential Lyapunov matrix equations, Numerical Algorithms, DOI: 10.1007/s11075-017-0458-y, (2018). [10] I.M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal. 31 (1994), 227–251. [11] K. Jbilou, Low-rank approximate solution to large Sylvester matrix equations, App. Math. Comput. 177 (2006), 365–376. [12] M. Oozawa, T. Sogabe, Y. Miyatake and S.L. Zhang, On a relationship between the T-congruence Sylvester equation and the Lyapunov equation, J. Comput. Appl. Math. 329 (2018), 51–56. [13] Penzl, T. LYAPACK A MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems, Available online: http://www.tuchemintz.de/sfb393/lyapack. [14] H.H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, J. Comput. 5 (1963), 329–330. [15] E. Sadek, A.H. Bentbib, L. Sadek and H.T. Alaoui, Global extended Krylov subspace methods for large-scale differential Sylvester matrix equations, J. Appl. Math. Comput. 62 (2020), 1571–7177. [16] L. Sadek and H.T. Alaoui, . The extended block Arnoldi method for solving generalized differential Sylvester equations, J. Math. Model. 8 (2020), no. 2, 189–206. [17] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput. 29 (2007), 12681–71288. | ||
آمار تعداد مشاهده مقاله: 43,982 تعداد دریافت فایل اصل مقاله: 399 |