
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,757 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
Hermite-Hadamard type fractional integral inequalities for strongly generalized-prequasi-invex function | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 46، دوره 13، شماره 2، مهر 2022، صفحه 515-525 اصل مقاله (392.43 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23370.2524 | ||
نویسندگان | ||
Maria Bibi* ؛ Muhammad Muddassar | ||
Department of Basics Sciences, University of Engineering and Technology, Taxila, Pakistan | ||
تاریخ دریافت: 19 اسفند 1399، تاریخ بازنگری: 28 اردیبهشت 1400، تاریخ پذیرش: 08 خرداد 1400 | ||
چکیده | ||
In this research paper we studied strongly generalized-prequasi-invex function. Built on the new definition, $k$-Riemann–Liouville fractional integral inequalities for strongly generalized-prequasi-invex functions are estimated. A bunch of new Hermite–Hadamard type Inequalities in this direction via Katugampola fractional integrals are also derived. | ||
کلیدواژهها | ||
Hermite–Hadamard type Inequality؛ Strongly generalized-prequasi-invex function؛ k-Riemann–Liouville fractional integrals؛ Katugampola fractional integrals | ||
مراجع | ||
[1] M. Adamek, On a problem connected with strongly convex functions, Math. Inequal. Appl. 19 (2016), no. 4, 1287–1293 [2] Wang Haiying and Fu Zufeng, Characterizations and applications of quasi a-preinvex functions, 7th Int. Conf. Intell. Human-Machine Syst. Cyber., vol. 1, IEEE, 2015, pp. 345–348. [3] I. I¸scan, Hermite-hadamard’s inequalities for prequasiinvex functions via fractional integrals, Konuralp J. Math. 2 (2012), no. 2, 76–84. [4] U.N. Katugampola, A new approach to generalized fractional derivatives, arXiv preprint arXiv:1106.0965 (2011). [5] S. Kermausuor and E.R. Nwaeze, New integral inequalities of hermite–hadamard type via the Katugampola fractional integrals for strongly η-quasiconvex functions, J. Anal. 29 (2021), no. 3, 633–647. [6] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and applications of fractional differential equations, vol. 204, Elsevier, 2006. [7] M.A. Latif and S.S. Dragomir, On hermite-hadamard type integral inequalities for n-times differentiable logpreinvex functions, Filomat 29 (2015), no. 7, 1651–1661. [8] B.B. Mohsen, M.A. Noor, K.I. Noor, and M. Postolache, Strongly convex functions of higher order involving bifunction, Math. 7 (2019), no. 11, 1028. [9] M. Muddassar, S.S. Dragomir, and Z. Hussain, Rayna’s fractional integral operations on hermite–hadamard inequalities with η-g-preinvex functions, Adv. Oper. Theory 5 (2020), no. 4, 1390–1405. [10] M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2 (2007), no. 2, 126–131. [11] E.R. Nwaeze, S. Kermausuor, and A.M. Tameru, Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus µ ≥ 0, J. Inequal. Appl. 2018 (2018), no. 1, 1–10. [12] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, and R.H. Romer, Integrals and series, 1988. [13] J.R. Wang, C. Zhu, and Y. Zhou, New generalized hermite-hadamard type inequalities and applications to special means, J. Inequal. Appl. 2013 (2013), no. 1, 1–15. [14] T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Aust. Math. Soci. 38 (1988), no. 2, 177–189. [15] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), no. 1, 29–38. [16] X.M. Yang, X.Q. Yang, and K.L. Teo, Characterizations and applications of quasi-invex functions, J. Optim. Theory Appl. 110 (2001), no. 3, 645–668. | ||
آمار تعداد مشاهده مقاله: 43,602 تعداد دریافت فایل اصل مقاله: 377 |