
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,837 |
تعداد دریافت فایل اصل مقاله | 7,656,341 |
Using a Laplace approximation to estimate the genetic variance components in animal models | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 232، دوره 13، شماره 2، مهر 2022، صفحه 2897-2907 اصل مقاله (529.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24702.2805 | ||
نویسندگان | ||
Fatemeh Pakbaz* 1؛ Alireza Nematollahi1؛ Fatemeh Hosseini2 | ||
1Department of Statistics, Shiraz University, Shiraz, Iran | ||
2Department of Statistics, Semnan University, Semnan, Iran | ||
تاریخ دریافت: 08 مهر 1400، تاریخ بازنگری: 01 اسفند 1400، تاریخ پذیرش: 26 فروردین 1401 | ||
چکیده | ||
Animal model is a type of mixed-effects model, where covariance among data points comes from genetic and environmental effects. In this paper, the multivariate normal distribution is assumed for the genetic random effects. A new approximate maximum likelihood method is proposed to obtain the estimates of the genetic variance components and heritability. The effectiveness of the proposed method is illustrated through a simulation study. | ||
کلیدواژهها | ||
Maximum Likelihood؛ Generalized Linear Mixed Model؛ Heritability | ||
مراجع | ||
[1] H. Baghishani, H. Rue and M. Mohammadzadeh, On a hybrid data cloning method and its application in generalized linear mixed models, Statist. Comput. 22 (2012), no. 2, 613–597. [2] B.M. Bolker, M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen, M.H.H. Stevens and J.S.S. White, Generalized linear mixed models: a practical guide for ecology and evolution, Trends Ecol. Evol. 24 (2009) no. 3, 127—135. [3] N.E. Breslow and D.G. Clayton, Approximate inference in generalized linear mixed models, J. Amer. Statist. Assoc. 88 (1993), no. 421, 9-25. [4] E. Evangelou, Z. Zhu and R. Smith, Estimation and prediction for spatial generalized linear mixed models using high order Laplace approximation, J. Statist. Plann. Inference 141 (2011), no. 11, 3564–3577. [5] J. Guan, W. Wang, Y. Hu, M. Wang, T. Tian, J. Kong, Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches, Acta Oceanologica Sinica 36 (2017), no. 6, 47–51. [6] F. Hosseini, J. Eidsvik and M. Mohammadzadeh, Approximate Bayesian inference in spatial GLMM with skew normal Latent variables, Computat. Statist. Data Anal. 55 (2011), no. 4, 1791–1806. [7] F. Hosseini and M. Mohammadzadeh, Bayesian prediction for spatial GLMM’s with closed skew normal Latent variables, Aust. New Zealand J. Statist. 54 (2012), 43–62. [8] F. Hosseini, A new algorithm for estimating the parameters of the spatial generalized linear mixed models, Envir. Ecol. Statist. 23 (2016), no. 2, 205–217. [9] F. Hosseini and O. Karimi, Approximate likelihood Inference in Spatial Generalized Linear Mixed Models with Closed Skew Normal latent Variables, Commun. Statist. Simul. Comput. 49 (2020), no. 1, 121–134. [10] F. Hosseini and O. Karimi, Approximate composite marginal likelihood inference in spatial generalized linear mixed models, J. Appl. Statist. 46 (2019), no. 3, 542–558. [11] D.L. Johnson, and R. Thompson, Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information, J. Dairy Sci. 78 (1995), no. 2, 449–456. [12] O. Karimi and M. Mohammadzadeh, Bayesian spatial prediction for discrete closed skew Gaussian random field, Math. Geosci. 43 (2011), no. 5, 565—582. [13] O. Karimi and M. Mohammadzadeh, Bayesian spatial regression models with closed skew normal correlated errors and missing observations, Statist. Papers 53 (2012), no. 1, 205—218. [14] O. Karimi, F. Hosseini and M. Mohammadzadeh, Pairwise likelihood in spatial GLMM with skew normal latent variables, Proc. 15th Conf. Int. Assoc. Math. Geo. Salzburg, Austria, 2011. [15] L.E. Kruuk, T.H. Clutton-Brock, J. Slate, J.M. Pemberton, S. Brotherstone and F.E. Guinness, Heritability of fitness in a wild mammal population, Proc. Nat. Acad. Sci. USA. 97 (2000), no. 2, 698—703.[16] L.E. Kruuk, Estimating genetic parameters in natural populations using the “animal model”, Philos. Trans. R. Soc. B Biol. Sci. 359 (2004), no. 1446, 873—890. [17] J.M. Milner, J.M. Pemberton, S. Brotherstone and S.D. Albon, Estimating variance components and heritabilities in the wild: a case study using the ‘animal model’ approach, J. Evol. Bio. 13 (2000), no. 5, 804—813. [18] P. McCulloch and J.A. Nelder, Generalized linear models, Chapman and Hall, London, 1989. [19] F. Pakbaz, F. Hosseini and A. Nematollahi, Modeling additive genetic effects in animal models by closed skew normal distribution, Commun. Statist. Simul. Comput. 51 (2022), no. 3, 1186–1198. [20] E. Ruli, N. Sartori and L. Ventura, Improved Laplace approximation for marginal likelihoods, Electron. J. Stat. 10 (2016), no. 2, 3986–4009. [21] Z. Shun and P. McCullagh,Laplace approximations of high dimensional integrals, J. Royal Statist. Soc. Ser. B 57 (1995), no. 4, 749–760. [22] M. Torabi, Likelihood inference in generalized linear mixed measurement error models, Comput. Statist. Data Anal. 57 (2013), no. 1, 549–557. [23] M. Torabi, Likelihood inference for spatial generalized linear mixed models, Commun. Statist. Simul. Comput. 44 (2015), no. 7, 1692–1701. [24] T.R. Vaez, F.W. Nicolas and H.W. Raadsma, REML estimates of variance and covariance components for production traits in Australian Merino sheep, using an animal model. 1. Body weight from birth to 22 months, Aust. J. Agricul. Res. 47 (1996), no. 8, 1235–1249. [25] B.J. Wilson, F.W. Nicholas, J.W. James, C.M. Wade and P.C. ThomsonEstimated breeding values for Canine Hip Dysplasia Radiographic Traits in a cohort of Australian German Shepherd Dogs, PLoS One 8 (2013), no. 10, e77470. [26] A.J. Wilson, D.W. Coltman, J.M. Pemberton, A.D.J. Overall, K.A. Byrne and L.E.B. Kruuk, Maternal genetic effects set the potential for evolution in a free-living vertebrate population, J. Evol. Bio. 18 (2005), no. 2, 405—414. [27] A.J. Wilson, D. Reale, M.N. Clements, M.M. Morrissey, E. Postma, C.A. Walling, L.E. Kruuk and D.H. Nussey, An ecologist’s guide to the animal model, J. Animal Eco. 79 (2010), no. 1, 13-–26. [28] H. Zhang, On estimation and prediction for spatial generalized linear mixed models, Biometrics 58 (2002), no. 1, 129-–136. | ||
آمار تعداد مشاهده مقاله: 44,016 تعداد دریافت فایل اصل مقاله: 339 |