
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,725 |
تعداد دریافت فایل اصل مقاله | 7,656,155 |
The disc structures of A4-graph for particular untwisted groups | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 47، دوره 13، شماره 2، مهر 2022، صفحه 527-533 اصل مقاله (380.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6478 | ||
نویسندگان | ||
Mohammed Mukheef Abed1؛ Amani E. Kadhm* 2؛ Rasha A. Ali3؛ Zainab Hasan Msheree4 | ||
1Technical Instructors Training Institute, Middle Technical University, Baghdad, Iraq | ||
2Technical Engineering College, Middle Technical University, Baghdad, Iraq | ||
3College of Physical Education and Sports Science, University of Baghdad, Baghdad, Iraq | ||
4Middle Technical University, Technical Instructors Training Institute, Iraq | ||
تاریخ دریافت: 26 دی 1400، تاریخ بازنگری: 09 اسفند 1400، تاریخ پذیرش: 10 فروردین 1401 | ||
چکیده | ||
Let $t$ be an elements of order 3 in a finite simple group $\mathrm{G}$. Let $\mathrm{X}=t^{\mathrm{G}}$ be a conjugacy class of $t$ in $\mathrm{G}$. The A4-graph, represented as $A_{4}(\mathrm{G}, \mathrm{X})$, is a simple graph has $\mathrm{X}$ as a vertex set and two vertices $x, y \in \mathrm{X}$, joined by edge whenever $\mathrm{x} \neq \mathrm{y}$ and $x y^{-1}=y x^{-1}$. In this paper, we investigate the discs structure and determine the clique number, girth and diameter of $A_{4}(\mathrm{G}, \mathrm{X})$ when $\mathrm{G}$ is isomorphic to one of the untwisted groups $\mathrm{G}_{2}(2)^{\prime}, \mathrm{G}_{2}(3)$ or $\mathrm{G}_{2}(4)$. | ||
کلیدواژهها | ||
Finite simple groups؛ A4-graph؛ connectivity, cliques | ||
مراجع | ||
[1] A. Aubad, A4-graph of finite simple groups, Iraqi J. Sci. 62 (2021), no. 1, 289–294. [2] A. Aubad, and P. Rowley. Commuting involution graphs for certain exceptional groups of Lie type, Graphs Comb. 37 (2021), 1345–1355. [3] C. Cedillo, R. MacKinney-Romero, M.A. Pizaa, I.A. Robles and R. Villarroel-Flores, Yet another graph system, YAGS. Version 0.0.5. http://xamanek.izt.uam.mx/yags, 2020. [4] H. Conway, R.T. Curtis, S.P. Norton and R.A. Parker, ATLAS of finite groups: Maximal subgroups and ordinary characters for simple groups, Oxford, Clarendon Press, 1985. [5] S. Kasim and A. Nawawi. On diameter of subgraphs of commuting graph in symplectic group for elements of order three, Sains Malay. 50 (2021), no. 2, 549–557. [6] V. Kelsey and P. Rowley. Chamber graphs of minimal parabolic sporadic geometries, Innov. Incid. Geo. 18 (2020), no. 1, 25–37. [7] X. Ma, G. Walls and K. Wang. Finite groups with star-free noncyclic graphs, Open Math. 17 (2019), no. 1, 906–912. [8] A. Maksimenko and A. Mamontov, The local finiteness of some groups generated by a conjugacy class of order 3 elements, Siberian Math. J. 48 (2007), no. 3, 508–518. [9] J. Tripp, I. Suleiman, S. Rogers R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, A. Wilson and P. Walsh, A world wide web atlas of group representations, 2021. [10] The GAP group. GAP groups, algorithms, and programming, Version 4.11.1, http://www.gap-system.org, 2021. [11] N. Yang, D. Lytkina, V. Mazurov and A. Zhurtov, Infinite Frobenius groups Generated by elements of order 3, Algebra Colloq. 27 (2020), no. 4, 741–748. [12] A. Zhurtov, Frobenius groups generated by two elements of order 3, Siberian Math. J. 42 (2001), no. 3, 450–454. | ||
آمار تعداد مشاهده مقاله: 43,763 تعداد دریافت فایل اصل مقاله: 490 |