
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,981 |
تعداد دریافت فایل اصل مقاله | 7,656,414 |
The boundedness of bilinear Fourier integral operators on $L^2\times L^2$ | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 126، دوره 13، شماره 2، مهر 2022، صفحه 1565-1575 اصل مقاله (452.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24800.2831 | ||
نویسندگان | ||
Omar Farouk Aid؛ Abderrahmane Senoussaoui* | ||
Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran1, Ahmed Ben Bella. B.P. 1524 El M'naouar, Oran, Algeria | ||
تاریخ دریافت: 15 مهر 1400، تاریخ بازنگری: 02 اردیبهشت 1401، تاریخ پذیرش: 13 اردیبهشت 1401 | ||
چکیده | ||
In this paper, the regularity of bilinear Fourier integral operators on $L^2\times L^2$ are determined in the framework of Besov spaces. Our result improves the $L^2\times L^2\rightarrow L^1$ boundedness of those operators with symbols in the bilinear Hormander classes. | ||
کلیدواژهها | ||
bilinear Fourier integral operators؛ bilinear Hormander symbol classes؛ Phase function and Besov spaces | ||
مراجع | ||
[1] H. Abels, Pseudodifferential and singular integral operators. An introduction with applications, de Gruyter, Berlin, 2012. [2] OF. Aid and A. Senoussaoui, The boundedness of h-admissible Fourier integral operators on Bessel potential spaces, Turk. J. Math. 43 (2019), no. 5, 2125 – 2141. [3] O.F. Aid and A. Senoussaoui, Hs -Boundeness of a class of a Fourier integral operators, Math. Slovaca 71 (2021), no. 4, 889–902. [4] K. Asada and D. Fujiwara, On some oscillatory transformations in L 2 (R n), Japanese J. Math. 4 (1978), no. 2, 299–361. [5] A. B´enyi and T. Oh, ´ On a class of bilinear pseudodifferential operators, J. Funct. Spaces Appl. 2013 (2013), 1–5. [6] A. B´enyi and K.A. Okoudjou, ´ Bilinear pseudodifferential operators on modulation spaces, J. Fourier Anal. Appl. 10 (2004), 301–313. [7] A. B´enyi and K.A. Okoudjou, ´ Modulation spaces estimates for multilinear pseudodifferential operators, Stud. Math. 172 (2006), 169–180. [8] A. B´enyi, K. Groechenig, C. Heil and K. Okoudjou, ´ Modulation spaces and a class of bounded multilinear pseudodifferential operators, J. Oper. Theory 54 (2005), 389–401. [9] A. B´enyi, D. Maldonado, V. Naibo and R.H. Torres, ´ On the H¨ormander classes of bilinear pseudodifferential operators, Integr. Equ. Oper. Theory 67 (2010), 341–364. [10] M. Cappiello and J. Toft, Pseudo-differential operators in a Gelfand–Shilov setting, Math. Nachr. 290 (2017), 738–755. [11] R.R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331.[12] R.R. Coifman and Y. Meyer, Commutateurs d’int´egrales singuli`eres et op´erateurs multilin´eaires, Ann. Inst. Fourier (Grenoble) 28 (1978), 177–202. [13] R.R. Coifman and Y. Meyer, Au del`a des op´erateurs pseudo-diff´erentiels, Ast´erisque, No. 57, Soci´et´e Math´ematique de France, 1979. [14] E. Cordero and KA. Okoudjou, Multilinear localization operators, J. Math. Anal. Appl. 325 (2007), 1103–1116. [15] L. Grafakos and R.H. Torres, Multilinear Calder´on–Zygmund theory, Adv. Math. 165 (2002), 124–164. [16] L. Grafakos, Modern fourier analysis, Third edition, Springer, New York, 2014. [17] N. Hamada, N. Shida and N. Tomita, On the ranges of bilinear pseudo-differential operators of S0,0-type on L 2 × L 2 , J. Funct. Anal. 280 (2021), no. 3, 108826. [18] T. Kato, Bilinear pseudo-differential operators with exotic class symbols of limited smoothness, J. Fourier Anal. Appl. 27 (2021), 1–56. [19] K. Koezuka and N. Tomita, Bilinear pseudo-differential operators with symbols in BSm 1,1 on Triebel–Lizorkin spaces, J. Fourier Anal. Appl. 24 (2018) 309–319. [20] S. Molahajloo, K.A. Okoudjou and G.E. Pfander, Boundedness of multilinear pseudodifferential operators on modulation spaces, J. Fourier Anal. Appl. 22 (2016), 1381–1415. [21] S. Rodr´ıguez-L´opez, D. Rule and W. Staubach, Global boundedness of a class of multilinear Fourier integral operators, Forum Math. Sigma 9 (2021), 1–45. | ||
آمار تعداد مشاهده مقاله: 44,092 تعداد دریافت فایل اصل مقاله: 303 |