
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,948 |
تعداد دریافت فایل اصل مقاله | 7,656,403 |
$L^\infty$-regularity result for an obstacle problem with degenerate coercivity in Musielak-Sobolev spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 130، دوره 13، شماره 2، مهر 2022، صفحه 1617-1641 اصل مقاله (520.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24213.2691 | ||
نویسندگان | ||
Mohamed Bourahma* 1؛ Jaouad Bennouna1؛ Mostafa El Moumni2؛ Abdelmoujib Benkirane1 | ||
1Laboratory of Mathematical Analysis and Applications (LAMA), Department of Mathematics, Faculty of Sciences Dhar el Mahraz, Sidi Mohamed Ben Abdellah University, PB 1796 Fez, Morocco | ||
2Department of Mathematics, Faculty of Sciences El Jadida, Chouaib Doukkali University, P.O.Box 20, 24000 El Jadida, Morocco | ||
تاریخ دریافت: 20 مرداد 1400، تاریخ بازنگری: 10 بهمن 1400، تاریخ پذیرش: 18 اردیبهشت 1401 | ||
چکیده | ||
Let $\Omega$ be a bounded open subset of $\mathbb{R}^{N},$ $N\geq 2$. In this paper we give an existence result of bounded solution, in Musielak spaces, for unilateral problems associated to the nonlinear elliptic equation $$ -\mathop{\rm div}a(x,u,{\nabla}u)+g(x,u,\nabla u)=f \quad\text{in }{\Omega},$$ where the nonlinearity $g$ does not satisfy the well known sign condition and $f$ is an integrable source. | ||
کلیدواژهها | ||
$L^infty$-estimates؛ Bounded solutions؛ Unilateral problems؛ Degenerate coercivity | ||
مراجع | ||
[1] R. Adams, Sobolev spaces, Academic Press Inc, New York, 1975. [2] L. Aharouch, A. Benkirane and M. Rhoudaf, Strongly nonlinear elliptic variational unilateral problems in Orlicz spaces, Abstr. Appl. Anal. 2006 (2006), 1–20. [3] L. Aharouch, A. Benkirane, M. Rhoudaf, Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces, Nonlinear Anal. 68 (2008), no. 8. 2362–2380. [4] L. Aharouch and M. Rhoudaf, Strongly nonlinear elliptic unilateral problems in Orlicz space and L 1 -data, J. Inequal. Pure Appl. Math. 6 (2005), no. 2, Art. 54, 1–20. [5] Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi, Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal. 275 (2018), no. 9, 2538–2571. [6] M. Ait Khellou and A. Benkirane:Correction to: Elliptic inequalities with L 1 data in MusielakOrlicz spaces, Monat. Math. 187 (2018), no. 1, 181–187. [7] M. Ait Khellou, A. Benkirane and S.M. Douiri: Existence of solutions for elliptic equations having natural growth terms in Musielak-Orlicz spaces, J. Math. Comput. Sci. 4 (2014), no. 4, 665–688. [8] M. Ait Khellou, A. Benkirane and S.M. Douiri, Some properties of Musielak spaces with only the log-Hlder continuity condition and application, Ann. Funct. Anal. 11 (2020), no. 4, 1062–1080. [9] Y. Akdim, A. Benkirane and M. El Moumni, Solutions of nonlin- ear elliptic problems with lower order terms, Ann. Funct. Anal. 6 (2015), no. 1, 34–53. [10] A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., IV. Ser. 182 (2003), no.1, 53–79. [11] A. Alvino, V. Ferone and G. Trombetti, A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381–391. [12] A. Benkirane and M.S. El Vally(Ould Mohameden Val): Some approximation properties in Musielak-OrliczSobolev spaces, Thai. J. Math. 10 (2012), no. 2, 371–381. [13] A. Benkirane, M.S. El Vally, An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math.Soc. Simon Stevin 20 (2013), no. 1, 57–75. [14] A. Benkirane and M.S. El Vally, Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), no. 5, 787–811. [15] A. Benkirane and A. Youssfi, existence of bounded solutions for a class of strongly nonlinear elliptic equations in Orlicz-Sobolev spaces, Aust. J. Math. Anal. 5 (2008), no. 1, Art. 7, 1–26. [16] A. Benkirane and A. Youssfi, existence of bounded sollutions for a class of strongly nonlinear elliptic equations in Orlicz-Sobolev spaces, Aust. J. Math. Anal. 5 (2008), no. 1, Art. 7, 1–26. [17] A. Benkirane, A. Youssfi and M. El Moumni, Bounded solutions of unilateral problems for strongly nonlinear elliptic equations in Orlicz spaces, Elect. J. of Qual. Th. of Diff. Eq. 2013 (2013), no. 21, 1–25. [18] C. Bennett, R. Sharpley: Interpolation of operators, Academic press, Boston, 1988. [19] L. Boccardo, A. Dall’Aglio, L. Orsina: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51–81. [20] L. Boccardo, F. Murat, J. P. Puel; L∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 2 (1992), 326–333. [21] L. Boccardo, S. Segura de le´on and C. Trombetti, Bounded and unbounded solution for a class of quasi-linear elliptic problems with aquadratic gradient term, J. Math. Pures Appl. 80 (2001), 919–940. [22] L. Boccardo, F. Murat and J.P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183–196. [23] L. Boccardo and G. Rita Cirmi: Unilateral problems with degenerate coercivity, Le Matematiche Vol. LIV Sup-plemento, (1999) 6173. [24] M. Bourahma, A. Benkirane and J. Bennouna, Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces, J. Rend. Circ. Mat. Palermo, II. Ser 2 69 (2020), no. 1, 231–252. [25] M. Bourahma, A. Benkirane and J. Bennouna,An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces, J. Rend. Circ. Mat. Palermo, II. Ser 2 70 (2021), no. 1, 481–504. [26] M. Bourahma, J. Bennouna and M. El Moumni: Existence of a weak bounded solutions for a nonlinear degenerate elliptic equations in Musielak spaces, Moroccan J. Pure and Appl. Anal. 6 (2020), no. 1, 16–33. [27] I. Chlebicka, P. Gwiazda and A. Zatorska Goldstein: Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak-Orlicz spaces in the class of renormalized solutions, 265 (2018), no. 11, 5716–5766. [28] R. Elarabi, M. Rhoudaf, H. Sabiki: Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces, Ric. Mat. 67 (2018), no. 2, 549–579. [29] A. Elmahi and D. Meskine: Nonlinear elliptic problems having natural growth and L 1 data in Orlicz spaces, Ann. Mat. Pura Appl. 184 (2005), no. 2, 161–184. [30] A. Elmahi and D. Meskine: Elliptic inequalities with lower order terms and L 1 data in Orlicz spaces. J. Math. Anal. Appl. 328 (2007), 1417-1434. [31] V. Ferone, M.R. Posteraro and J.M. Rakotosone, L∞ estimates for nonlinear elliptic problem with p-growth in the gradient, J. Ineq. Appl. 3 (1999), 109–125. [32] J.P. Gossez: A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. Sympos. Pure Math. 45, Amer. Math. Soc., (1986), 455–462. [33] J. P. Gossez: Surjectivity results for pseudo-monotone mappings in complementary systems, J. Math. Anal. Appl. 53 (1976), 484–494. [34] J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205. [35] J.P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), 379-49. [36] P. Gwiazda, I. Skrzypczak and A. Zatorska.Goldstein, Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, J. Differential Equ. 264 (2018), 341-377. [37] P. Harjulehto and P. H¨ast¨o, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019. [38] M. Krasnosel’skii and Ya. Rutikii, Convex functions and Orlicz spaces, Groningen, Nordhooff, 1969. [39] J. Musielak: Orlicz spaces and modular spaces, Lecture Note in Mahtematics, 1034, Springer, Berlin, 1983. [40] G. Talenti, Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. IV. Ser. 120 (1979), 159–184. [41] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 697–718. [42] G. Talenti, Linear elliptic P.D.E’s: Level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. 4 (1985), no. 6, 917–949. [43] C. Trombetti, Non-uniformly elliptic equations with natural growth in the gradient, Potential Anal. 18 (2003), 391–404. [44] A. Youssfi, Existence of bounded solution for nonlinear degenerate elliptic equations in Orlicz spaces, Electron. J. Differ. Equ. 2007 (2007), no. 54, 1–13. | ||
آمار تعداد مشاهده مقاله: 44,079 تعداد دریافت فایل اصل مقاله: 393 |