
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,840 |
تعداد دریافت فایل اصل مقاله | 7,656,342 |
Study of a mathematical model of an epidemic via dynamic programming approach. | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 132، دوره 13، شماره 2، مهر 2022، صفحه 1649-1661 اصل مقاله (1.15 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25802.3131 | ||
نویسندگان | ||
Bouremani Touffik* 1؛ Yacine Slimani2 | ||
1Laboratory of Applied Mathematics, LAMA, Faculty of Technology, Setif-1 Ferhat Abbas University, 19000, Algeria | ||
2Laboratory of Intelligent System, LIS, Faculty of Technology, Setif-1 Ferhat Abbas University, 19000, Algeria | ||
تاریخ دریافت: 14 دی 1400، تاریخ بازنگری: 31 فروردین 1401، تاریخ پذیرش: 25 اردیبهشت 1401 | ||
چکیده | ||
We use some recent developments in Dynamics Programming Method to obtain a rigorous solution of the epidemic model formulated in E. Trélat [Controle optimal: théorie et applications, (online version 2020)] as an unsolved problem. In fact, this problem is proposed in the context of using Pontryagin’s Maximum Principle. We use a certain refinement of Cauchy’s Method of characteristics for stratified Hamilton-Jacobi equations to describe a large set of admissible trajectories and identify a domain on which the value function exists and is generated by a certain admissible control. The optimality is justified by using of one of the well-known verification theorems as an argument for sufficient optimality conditions. | ||
کلیدواژهها | ||
Optimal control؛ Dynamic programming؛ Maximum principle؛ Differential inclusion؛ Hamiltonian flow؛ Value function | ||
مراجع | ||
[1] A. Abakuks and A. Guiro, An optimal isolation policy for an epidemic, J. Appl. Prob. 10 (1973), no. 2, 247–262 . [2] M. Barro, A. Guiro and D. Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays, CUBO Math. J. 20 (2018), no. 2, 53–66 . [3] T. Bouremani, D. Benterki and Y. Slimani, Optimal Control of an Epidemic by Vaccination using Dynamic Programming Approach, Int. J. Math. Oper. Res. In Press, DOI: 10.1504/IJMOR.2021.10042624. [4] A. Cernea , S¸ and Miric˘a, Minimum principle for some classes of nonconvex differential inclusions, Anal. St. Univ. Al.I. Cuza Ia¸si, Mat. 41 (1995), no. 2, 307–324 . [5] L. Cesari, Optimization-Theory and applications, Springer-Verlag, 1983. [6] M. Dashtbali, A. Malek and M. Mirzaie, Optimal control and differential game solutions for social distancing in response to epidemics of infectious diseases on networks, Optim. Control Appl. Meth. 41 (2020,) 2149–2165 . [7] H. Frankowska, The maximum principle for an optimal solution to a differential inclusion with end point constraints, SIAM J. Control Optim. 25 (1987), no. 1, 145–157 . [8] Y-G. Hwang,H-D. Kwon and J. Lee, Feedback control problem of an SIR epidemic model based on the HamiltonJacobi-Bellman equation, Math. Biosci. Engin. 17 (2020), no. 3, 2284–2301 . [9] V. Lupulescu and S¸. Miric˘a, Verification theorems for discontinuous value functions in optimal control, Math. Reports 2 (2000), no. 52, 299–326 . [10] S¸. Miric˘a, Constructive Dynamic programming in optimal control Autonomous Problems, Editura Academiei Romˆane, Bucharest, 2004. [11] S¸. Miric˘a, User’s Guide to Dynamic Programming for differential games and optimal control, Rev. Roumaine Math. Pures Appl. 49 (2004), no. 5-6, 501–529 . [12] S¸. Miric˘a and T. Bouremani, On the correct Solution of a trivial Optimal Control in Mathematical Economics, Math. Reports 9 (2007), no. 59, 77–86 . [13] S¸. Miric˘a and C. Necul˘aescu, On the solution of an optimal control problem in mathematical economics, Ann. Bucharest Univ. Comput. Sci. 1 (1998), no. 1, 49–57 . [14] N. Moussouni and M. Aliane, Optimal control of COVID-19, Int. J. Optim. Control: Theor. Appl. 11 (2021), no. 1, 114–122 . [15] S. Moyo, L.G. Zelaya Cruz, R.L. de Carvalho and R.M. Faye, A model for pandemic control through isolation policy, RAIRO-Oper. 54 (2020), no. 6, 1875–1890 . [16] L.L. Obsu and S.F. Balcha, Optimal control strategies for the transmission risk of COVID-19, J. Bio. Dyn. 14 (2020), no. 1, 590–607 . [17] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962. [18] C.J. Silva and D.F.M. Torres, Modeling and optimal control of HIV/AIDS prevention through prep, Discrete Contin. Dyn. Syst. 11 (2018), no. 1, 119–141 . [19] E. Tr´elat, Contrˆole optimal: th´eorie et applications, Version ´el´ectronique, 2020. | ||
آمار تعداد مشاهده مقاله: 43,981 تعداد دریافت فایل اصل مقاله: 464 |