
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,929 |
تعداد دریافت فایل اصل مقاله | 7,656,387 |
Multikernel optimized beam forming using sparse representation for non-uniform linear array | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 184، دوره 13، شماره 2، مهر 2022، صفحه 1803-1810 اصل مقاله (779.3 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.24562.2769 | ||
نویسندگان | ||
Mamatha M.C.* ؛ Sateesh Kumar H.C. | ||
Department of Electronics and Communication Engg, Sapthagiri College of Engineering(Affiliated to Visvesvaraya Technological University, Belagavi) Bengaluru, India | ||
تاریخ دریافت: 25 شهریور 1400، تاریخ بازنگری: 15 مهر 1400، تاریخ پذیرش: 25 آذر 1400 | ||
چکیده | ||
Recent developments in Basis pursuit solver algorithm have led to better beam forming techniques. Sparse representation of signal helps in better signal analysis. This paper examines how to compute the direction of arrival of non-uniform linear array using sparse computation. A comparison between traditional techniques and sparse representation to estimate the direction of arrival is also studied. A novel method is proposed based on basis pursuit denoising multichannel implementation (BPDN) to estimate the Direction of arrival. Simulation results are verified with the formulation developed for direction of arrival. | ||
کلیدواژهها | ||
Multi-kernel؛ Beam Forming؛ Sparse Representation؛ on-Uniform Linear Array؛ Direction of Arrival | ||
مراجع | ||
[1] J. Lin, X. Ma, S. Yan and C Hao, Time-frequency multi-invariance ESPRIT for DOA estimation, IEEE Anten. Wireless Propag. Lett. 15 (2015), 770–773. [2] C. Ashok and N. Venkateswaran, Support vector regression based DOA estimation in heavy tailed noise environment, Int. Conf. Wireless Commun. Signal Process. Network. (WiSPNET), Chennai, India, IEEE, 2016, pp. 99–102. [3] J. Pan, C. Zhou, B. Liu and K. Jiang Joint DOA and Doppler frequency estimation for coprime arrays and samplers based on continuous compressed sensing, CIE Int. Conf. Radar (RADAR), Yangzhou, Jiangsu Province, China, IEEE, 2016, pp. 1–5. [4] M.A. Hannan, N. Anselmi, G. Oliveri and P. Rocca, Joint DoA and bandwidth estimation of unknown signals through single snapshot data and MT-BCS approach, Int. Symp. Anten. Propag. USNC/URSI Nat. Radio Sci. Meet., San Diego, CA, USA, IEEE, 2017, pp. 2389–2390 [5] J. Shi, Q. Zhang and Y. Wang, Wideband DOA estimation based on A-shaped array, Int. Conf. Signal Process. Commun. Comput. (ICSPCC), Xiamen, China, IEEE, 2018, pp. 1–5. [6] T. Fan, H. Jiang and J. Sun, Ambiguity function-based ESPRIT-rootmusic algorithm for DOD-DOA estimation in MIMO radar, Int. Conf. Radar Syst. (Radar), Belfast, IET, 2018, pp. 1–4 [7] G. Ning, B. Wang, C. Zhou and Y. Feng, A velocity independent MUSIC algorithm for DOA estimation, Int. Conf. Signal Process. Commun. Comput.(ICSPCC), Xiamen, China, IEEE, 2017, pp. 1-4. [8] H. Zhao, M. Cai and H. Liu, Two-dimensional DOA Estimation with reduced dimension MUSIC algorithm, Int. Appl. Comput. Electromag. Soc. Symp. (ACES), Suzhou, China, IEEE, 2017, pp. 1–2. [9] B.Vikas and D. Vakula, Performance comparision of MUSIC and ESPRIT algorithms in presence of coherent signals for DoA estimation, Int. Conf. Electron. Commun. Aerospace Technol. (ICECA), Coimbatore, India, IEEE, 2017, pp. 403–405. [10] W. Shi, C. He, J. Huang and Q. Zhang, Fast MUSIC algorithm for joint DOD-DOA estimation based on Gibbs sampling in MIMO array, Int. Conf. Signal Process. Commun. Comput. (ICSPCC), Hong Kong, China, IEEE, 2016, pp. 1–4. [11] Y. Chen, F. Wang, J. Wan and K. Xu, DOA estimation for long-distance underwater acoustic sources based on signal self-nulling, 2nd Adv. Inf. Technol. Electron. Autom. Control Conf. (IAEAC), Chongqing, China, IEEE, 2017, pp. 563–567 [12] X. Lan, W. Liu and H.Y.T. Ngan, Joint 4-D DOA and polarization estimation based on linear tripole arrays, Int. Conf. Digital Signal Process. (DSP), London, UK, IEEE, 2017, pp. 1–5 [13] A.-T. Nguyen, T. Matsubara and T. Kurokawa, High-performance DOA estimation for coprime arrays with unknown number of sources, Asia-Pacific Int. Symp. Electromag. Compat. (APEMC) , Seoul, Korea (South), IEEE, 2017, pp. 369–371. [14] X.L. Tran, J. Vesel´y, F. Dvoˇr´ak and T.B. Le, SSubarray incoherency compensation for DOA estimation of 8- element antenna array, Int. Conf. Military Technol. (ICMT), Brno, Czech Republic, IEEE, 2017, pp. 662–665.[15] Q. Wang, Z. Zhao and Z. Chen, Fast compressive sensing DOA estimation via ADMM solver, Int. Conf. Inf. Autom. (ICIA), Macao, China, IEEE, 2017, pp. 53–57. [16] A. Faye, J.D. Ndaw and A.S. Maiga, Two-dimensional DOA estimation based on a single uniform linear array, 25th Telecommun. Forum (TELFOR), Belgrade, Serbia, IEEE, 2017, pp. 1–4. [17] L. Xiaozhi, S. Muye and Y. Yinghua, An effective doa estimation method of coherent signals based on reconstruct weighted noise subspace, 29th Chinese Control Decision Conf. (CCDC), Chongqing, China, IEEE, 2017, pp. 2218–2222. [18] H. Kim, J. Kim, K.H. Lee and K.S. Kim, DOA estimation in cyclic prefix OFDM systems in LOS mmWave channel using monopulse ratio, Int. Conf. Inf. Commun. Technol. Convergence (ICTC), Jeju, Korea (South), IEEE, 2018, pp. 342–345. [19] Y. Nakajima, N. Kikuma and K. Sakakibara, Reduction effect of snapshots in DOA estimation using radio holography by SAGE algorithm, Int. Workshop Electromagnetics: Appl. Student Innov. Compet., Nagoya, Japan, IEEE, 2018, pp. 1–1. [20] X. Zhang, Y. Li, Y. Yuan, T. Jiang and Y. Yuan, Low-complexity DOA estimation via OMP and majorizationminimization, Asia-Pacific Conf. Antennas and Propagation (APCAP), Auckland, New Zealand, IEEE, 2018, pp. 18–19. [21] F. An, H. Nosrati, E. Aboutanios and A. Hassanien, Single-snapshot DOA estimation in MIMO radar using fast iterative interpolated beamforming, 52nd Asilomar Conf. Signals, Syst. Comput. Pacific Grove, CA, USA, IEEE, 2018, pp. 924–928. [22] J.J. Carabias-Orti1, P. Cabanas-Molero, P. Vera-Candeas and J. Nikunen, Multi-source localization using a doa kernel based spatial covariance model and complex nonnegative matrix factorization, 10th Sensor Array and Multichannel Signal Process. Workshop (SAM), Sheffield, UK, IEEE, 2018, pp. 440–444. [23] M. Groth and L. Kulas, Accurate PPCC-based doa estimation using multiple calibration planes for WSN nodes equipped with ESPAR antennas, 15th Eur. Radar Conf. (EuRAD), Madrid, Spain, IEEE, 2018, 545—548. [24] S. Choi, B. Kim, J. Kim, D. Kim and H. Cho, Doppler coherent focusing DOA method for efficient radar map generation, MTT-S Int. Conf. Microwaves Intell. Mobil.(ICMIM), Detroit, MI, USA, IEEE, 2019, pp.1–4. [25] Y. Yao, T. N. Guo, Z. Chen and C. Fu, A fast multi-source sound DOA estimator considering colored noise in circular array, IEEE Sensors J. 19 (2019), 6914–6926. [26] N. Hu, B. Sun, J. Wang, J. Dai and C. Chang, Source localization for sparse array using nonnegative sparse Bayesian learning, Signal Process. 127 (2016), 37–43. [27] X. He and T. Liu, Sparse matrix reconstruction based on sequential sparse recovery for multiple measurement mectors, 6th Int. Conf. Comput. Commun. Syst., Chengdu, China, IEEE, 2021, pp. 480–483. [28] H. Zhang, Y. Pang, S. Liang and Y. Hao, Iterative deblending of off-the-grid simultaneous source data, IEEE Access 9 (2021), 4923–4938. | ||
آمار تعداد مشاهده مقاله: 43,826 تعداد دریافت فایل اصل مقاله: 295 |