
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,167 |
Analysis of a delayed HIV pathogenesis model with saturation incidence, both virus-to-cell and cell-to-cell transmission | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 154، دوره 13، شماره 2، مهر 2022، صفحه 1927-1936 اصل مقاله (781.75 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22444.2364 | ||
نویسندگان | ||
Vinoth Sivakumar* ؛ Jayakumar Thippan؛ Prasantha Bharathi Dhandapani | ||
Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India | ||
تاریخ دریافت: 04 بهمن 1399، تاریخ بازنگری: 09 اردیبهشت 1400، تاریخ پذیرش: 21 اردیبهشت 1400 | ||
چکیده | ||
In this paper, we proposed and studied a delayed HIV pathogenesis model with saturation incidence, both virus-to-cell and cell-to-cell transmission. We address the basic reproduction number R0, the characteristic equations, and local stability of feasible equilibria are established. Where the delay incorporates both virus-to-cell and cell-to-cell transmission. Moreover, we discuss the existence of Hopf Bifurcation when a delay is used as a bifurcation parameter. Numerical simulations are performed to satisfy our theoretical results. | ||
کلیدواژهها | ||
Cell-to-cell transmission؛ Intracellular delay؛ Hopf bifurcation؛ Saturation incidence | ||
مراجع | ||
[1] E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal. 33 (2002), 1144–1165. [2] L. Cai, X. Li, M. Ghosh and B. Guo, Stability analysis of an HIV/AIDS epidemic model with treatment, J. Comput. Appl. Math. 229 (2009), 313–323. [3] R.V. Culshaw and S. Ruan, A delay differential equation model of HIV infection of CD4 + T cells, Math. Biosci. 165 (2000), 27–39. [4] X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl. 426 (2015), 563–584. [5] X. Lai and X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math. 74 (2014), no. 3, 898–917. [6] J.A. Levy, Pathogenesis of Human immunodeficiency virus infection, Microbiol. Rev. 57 (1993), no. 1, 183–289. [7] M.Y. Li and H. Shu, Joint effects of mitosis and intracellular delay on viral dynamics: Two-parameter bifurcation analysis, J. Math. Biol. 64 (2012), 1005–1020. [8] M.Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamicson in vivo viral infections, SIAM J. Appl. Math. 70 (2010), no. 7, 2434–2448. [9] F. Li and J. Wang, Analysis of an HIV infection model with logistic target-cell growth and cell-to-cell transmission, Chaos Solution Fractals 81 (2015), 136–145.[10] J. Lin, R. Xu and X. Tian, Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput. 315 (2017), 516–530. [11] Y. Lv, Z. Hu and F. Liao, The stability and Hopf bifurcation for an HIV model with saturated infection rate and double delays, Int. J. Biomath. 11 (2018), no. 3, 1–43. [12] A.S. Perelson, D.E. Kirschner and R.J. De Boer, Dynamics of HIV infection of CD4 + T cells, Math. Biosci. 114 (1993), 81–125. [13] S. Vinoth, T. Jayakumar and D. Prasantha Bharathi, Stability analysis of a Mathematical model for the dynamics of HIV infection with cure rate, Int. J. Appl. Engin. Res. 14 (2019), no. 3 (Special Issue), 87–90. [14] T. Wang, Z. Hu and F. Liao, Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, J. Math. Anal. Appl. 411 (2014), 63–74. [15] J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell to-cell transmission, Nonlinear Anal. Real World Appl. 34 (2017), 75–96. [16] R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl. 375 (2011), 75–81. [17] J. Xu and Y. Zhou, Bifurcation analysis of HIV-1 infection model with cell-To-cell transmission and immune response delay, Math. Biosci. Engin. 13 (2016), no. 2, 343–367. [18] J.Y. Yang, X.Y. Wang and X.Z. Li, Hopf bifurcation for a model of HIV infection of CD4 + T-cells with virus released delay, Discrete Dyn. Nature Soc. 2011 (2011), Article ID 649650, 1–24. [19] X.Zhang and Z. Liu, Bifurcation Analysis of an Age Structured HIV Infection Model with Both Virus-to-Cell and Cell-to-Cell Transmissions, Int. J. Bifurc. Chaos 28 (2018), no. 9, 1–20. [20] X. Zhou, X. Song and X. Shi, Analysis of stability and Hopf bifurcationfor an HIV infection model with time delay, Appl. Math. Comput. 199 (2008), 23–38. | ||
آمار تعداد مشاهده مقاله: 44,082 تعداد دریافت فایل اصل مقاله: 322 |