
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,819 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
A study on hyperbolic numbers with generalized Jacobsthal numbers components | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 157، دوره 13، شماره 2، مهر 2022، صفحه 1965-1981 اصل مقاله (393.89 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22113.2328 | ||
نویسندگان | ||
Yumksel Soykan1؛ Erkan Taşdemir* 2 | ||
1Department of Mathematics, Art and Science Faculty, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey | ||
2Kirklareli University, Pinarhisar Vocational School, 39300, Kirklareli, Turkey | ||
تاریخ دریافت: 25 آذر 1399، تاریخ بازنگری: 09 خرداد 1400، تاریخ پذیرش: 22 خرداد 1400 | ||
چکیده | ||
In this paper, we introduce the generalized hyperbolic Jacobsthal numbers. As special cases, we deal with hyperbolic Jacobsthal and hyperbolic Jacobsthal-Lucas numbers. We present Binet's formulas, generating functions and the summation formulas for these numbers. Moreover, we give Catalan's, Cassini's, d'Ocagne's, Gelin-Cesàro's, Melham's identities and present matrices related with these sequences. | ||
کلیدواژهها | ||
Jacobsthal numbers؛ Jacobsthal-Lucas numbers؛ hyperbolic numbers؛ hyperbolic Jacobsthal numbers؛ Cassini identity | ||
مراجع | ||
[1] M. Akar, S. Y¨uce and S¸. S¸ahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, J. Comput. Sci. Comput.Math. 8 (2018), no. 1, 1–6. [2] M. Akbulak and A. Otele¸s, ¨ On the sum of Pell and Jacobsthal numbers by matrix method, Bull. Iranian Math. Soc. 40 (2014), no. 4, 1017–1025. [3] F.T. Aydın, On generalizations of the Jacobsthal sequence, Notes Number Theory Discrete Math. 24 (2018), no. 1, 120–135. [4] F.T. Aydın, Hyperbolic Fibonacci sequence, Universal J. Math. Appl. 2 (2019), no. 2, 59–64. [5] J. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2002), no. 2, 145–205. [6] D.K. Biss, D. Dugger and D.C. Isaksen, Large annihilators in Cayley-Dickson algebras, Commun. Algebra 36 (2008), no. 2, 632–664. [7] P. Catarino, P. Vasco, A.P.A. Campos and A. Borges, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra Discrete Math. 20 (2015) , no. 1, 40–54. [8] Z. Cerin, ˇ Formulae for sums of Jacobsthal–Lucas numbers, Int. Math. Forum 2 (2007), no. 40, 1969–1984. [9] Z. Cerin, ˇ Sums of Squares and Products of Jacobsthal Numbers, J. Integer Seq. 10 (2007), 1–15.[10] H.H. Cheng and S. Thompson, Dual Polynomials and complex dual numbers for analysis of spatial mechanisms, Proc. ASME 24th Biennial Mechanisms Conference, Irvine, CA, August, 1996, pp. 19–22. [11] J. Cockle, On a new imaginary in algebra, Phil. Mag. London-Dublin-Edin. 3 (1849), no. 34, 37–47. [12] A. Dasdemir, On the Jacobsthal numbers by matrix method, SDU J. Sci. 7 (2012), no. 1, 69–76. [13] A. Da¸sdemir, A study on the Jacobsthal and Jacobsthal–Lucas numbers by matrix method, DUFED J. Sci. 3 (2014), no. 1, 13–18. [14] CM. Dikmen, Hyperbolic Jacobsthal Numbers, Asian Research Journal of Mathematics 15(4) (2019) 1-9. [15] PG. Fjelstad and SG. Gal, n-dimensional Hyperbolic Complex Numbers, Adv. Appl. Clifford Algebras 8 (1998), no. 1, 47–68. [16] A. Gnanam and B. Anitha, Sums of Squares Jacobsthal Numbers, IOSR J. Math. 11 (2015), no. 6, 62–64. [17] W.R. Hamilton, Elements of quaternions, Chelsea Publishing Company, New York, 1969. [18] A.F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), 40–54. [19] A.F. Horadam, Jacobsthal and Pell curves, Fibonacci Quart. 26 (1988), 77–83. [20] K. Imaeda and M. Imaeda, Sedenions: Algebra and analysis, Appl. Math. Comput. 115 (2000), 77–88. [21] B. Jancewicz, The extended Grassmann algebra of R3, Clifford (Geometric) Algebras with Applications and Engineering, Birkhauser, Boston, 1996, 389-421. [22] I. Kantor and A. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, New York, 1989. [23] A. Khrennikov and G. Segre, An Introduction to hyperbolic analysis, http://arxiv.org/abs/math-ph/0507053v2, 2005. [24] G.E. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and JacobsthalLucas numbers, Hacet. J. Math. Stat. 36 (2007), no. 2, 133–142. [25] F. K¨oken and D. Bozkurt, On the Jacobsthal numbers by matrix methods, Int. J. Contemp Math. Sciences 3(13) (2008) 605-614. [26] V.V. Kravchenko, Hyperbolic numbers and analytic functions, Applied Pseudoanalytic Function Theory, Frontiers in Mathematics. Birkh¨auser Basel, 2009. [27] V. Mazorchuk, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra Discrete Math. 20 (2015), no. 1, 40–54. [28] G. Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, Bol. Soc. Mat. Mexicana 4 (1998), no. 3, 13–28. [29] A.E. Motter and A.F. Rosa, Hyperbolic calculus, Adv. Appl. Clifford Algebr. 8 (1998), no. 1, 109–128. [30] N.J.A. Sloane, The on-line encyclopedia of integer sequences, Available: http://oeis.org/ [31] G. Sobczyk, The hyperbolic number plane, College Math. J. 26 (1995), no. 4, 268–280. [32] G. Sobczyk, Complex and hyperbolic numbers, New Foundations in Mathematics, Birkh¨auser, Boston, 2013. [33] Y. Soykan, Tribonacci and Tribonacci-Lucas Sedenions, Math. 7 (2019), no. 1, 1–19. [34] Y. Soykan, On summing formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers, Adv. Res. 20 (2019), no. 2, 1–15. [35] Y. Soykan, Corrigendum: On summing formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers, 2019. [36] Y. Soykan, On hyperbolic numbers with generalized Fibonacci numbers components, Researchgate Preprint, DOI: 10.13140/RG.2.2.19903.87207. [37] S¸. Uygun, Some sum formulas of (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas matrix sequences, Appl. Math. 7 (2019), 61–69. | ||
آمار تعداد مشاهده مقاله: 44,331 تعداد دریافت فایل اصل مقاله: 569 |