| تعداد نشریات | 21 |
| تعداد شمارهها | 663 |
| تعداد مقالات | 9,691 |
| تعداد مشاهده مقاله | 68,983,237 |
| تعداد دریافت فایل اصل مقاله | 48,478,684 |
Geometry of submanifolds of all classes of third-order ODEs as a Riemannian manifold | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقاله 99، دوره 14، شماره 1، فروردین 2023، صفحه 1283-1294 اصل مقاله (406.71 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25069.2913 | ||
| نویسندگان | ||
| Zeynab Bakhshandeh-Chamazkoti1؛ Abolfazl Behzadi1؛ Rohollah Bakhshandeh-Chamazkoti* 2؛ Mehdi Rafie-Rad1 | ||
| 1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
| 2Department of Mathematics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran | ||
| تاریخ دریافت: 09 آبان 1400، تاریخ بازنگری: 01 بهمن 1400، تاریخ پذیرش: 06 بهمن 1400 | ||
| چکیده | ||
| In this paper, we prove that any surface corresponding to linear second-order ODEs as a submanifold is minimal in the class of third-order ODEs $y'''=f(x, y, p, q)$ as a Riemannian manifold where $y'=p$ and $y''=q$, if and only if $q_{yy}=0$. Moreover, we will see the linear second-order ODE with general form $y''=\pm y+\beta(x)$ is the only case that is defined a minimal surface and is also totally geodesic. | ||
| کلیدواژهها | ||
| Levi-Civita connection؛ minimal surface؛ moving frame؛ Riemannian manifold؛ Riemann curvature tensor؛ totally geodesic | ||
|
آمار تعداد مشاهده مقاله: 17,277 تعداد دریافت فایل اصل مقاله: 9,168 |
||