
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,789 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
Geometry of submanifolds of all classes of third-order ODEs as a Riemannian manifold | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 99، دوره 14، شماره 1، فروردین 2023، صفحه 1283-1294 اصل مقاله (406.71 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25069.2913 | ||
نویسندگان | ||
Zeynab Bakhshandeh-Chamazkoti1؛ Abolfazl Behzadi1؛ Rohollah Bakhshandeh-Chamazkoti* 2؛ Mehdi Rafie-Rad1 | ||
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
2Department of Mathematics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran | ||
تاریخ دریافت: 09 آبان 1400، تاریخ بازنگری: 01 بهمن 1400، تاریخ پذیرش: 06 بهمن 1400 | ||
چکیده | ||
In this paper, we prove that any surface corresponding to linear second-order ODEs as a submanifold is minimal in the class of third-order ODEs $y'''=f(x, y, p, q)$ as a Riemannian manifold where $y'=p$ and $y''=q$, if and only if $q_{yy}=0$. Moreover, we will see the linear second-order ODE with general form $y''=\pm y+\beta(x)$ is the only case that is defined a minimal surface and is also totally geodesic. | ||
کلیدواژهها | ||
Levi-Civita connection؛ minimal surface؛ moving frame؛ Riemannian manifold؛ Riemann curvature tensor؛ totally geodesic | ||
آمار تعداد مشاهده مقاله: 17,139 تعداد دریافت فایل اصل مقاله: 327 |