
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,862 |
تعداد دریافت فایل اصل مقاله | 7,656,349 |
On the food chain model with prey refuge and fear effect | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 166، دوره 13، شماره 2، مهر 2022، صفحه 2071-2086 اصل مقاله (1.28 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24222.2694 | ||
نویسنده | ||
Nijamuddin Ali* | ||
Department of Mathematics, Vivekananda Mahavidyalaya, Purba Bardhaman-713103, West Bengal, India | ||
تاریخ دریافت: 21 مرداد 1400، تاریخ بازنگری: 24 فروردین 1401، تاریخ پذیرش: 15 خرداد 1401 | ||
چکیده | ||
Of concern the present study deals with an updated food chain model in a natural environment with the inclusion of fear effect in the prey population through Holling type II functional response in presence of prey refuge effect. The present model is affluent with intra-specific competition among the hunter species having specific mortality. The model system emphasizes its characteristics in the proximity of the probable equilibrium position in the realm of biological dynamics. The response of the system is explored further for its stability analysis based on prerequisites and Hopf-bifurcation phenomena as well with respect to some significant model parameters. Extensive numerical simulation reveals the validity of the proposed model so as to indicate the ecological implications. | ||
کلیدواژهها | ||
Food chain model؛ Fear effect؛ Intra-specific competition؛ Prey refuge؛ Coexistence state؛ Stability؛ Hopf-bifurcations | ||
مراجع | ||
[1] N. Ali and S. Chakravarty, Consequence of prey refuge in a tri-trophic prey-dependent food chain model with intra-specific competition, J. Appl. Non. Dyn. 3 (2014), 1–6.[2] R. Arditi and L. Ginzburg, Coupling in predator-prey dynamics: ratiodependence, J. Theo. Bio. 139 (1989), 311–326. [3] A.D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, 1998. [4] J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Ani. Ecol. 44 (1975), 331–340. [5] G. Birkhoff and G.C. Rota, Ordinary differential equations, Ginn, Boston, 1989. [6] C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81 (2009), 591. [7] P. Cong, M. Fan and X. and Zou, Dynamics of a three-species food chain model with fear effect, Commn. Non. Sc. Num. Sim. 99 (2021), 105809. [8] S. Creel and N.M. Creel, Communal hunting and pack size in African wild dogs, Lycaon pictus, Anim. Behav. 50 (1995), 1325–1339. [9] A. Dejean, C. Leroy, B. Corbara, O. Roux, P. Cereghino, J. Orivel and R. Boulay, Arboreal ants use the “velcro principle” to capture very large prey, Plos. One 5 (2010), e11331. [10] J.P. Fran¸coise and J. Llibre, Analytical study of a triple Hopf bifurcation in a tritrophic food chain model, Appl. Math. Comp. 217 (2011), 7146–7154. [11] S. Gakkhar and R. Naji, Seasonally perturbed prey-predator system with predator-dependent functional response, Chaos. Sol. Frac. 18 (2003), 1075–1083. [12] M. Haque, Ratio-dependent predator-prey models of interacting populations, B. Math. Bio. 71 (2009), 430–452. [13] M. Haque, N. Ali and S. Chakravarty, Study of a tri-trophic prey-dependent food chain model of interacting populations, Math. Bio. 246 (2013), 55–71. [14] A. Hastings and T. Powell, Chaos in a three-species food chain, Ecol. 72 (1991), 896–903. [15] C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Canad. Entomologist. 91 (1959), 293–329. [16] E. Holmes, M. Lewis, J. Banks and R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecol. 75 (1994), 17–29. [17] A. Klebanoff and A. Hastings, Chaos in three species food chains, J. Math. Bio. 32 (1994) 427–451. [18] M. Kot, Elements of mathematical ecology, Cambridge University Press, 2001. [19] V. Kumar and N. Kumari, Controlling chaos in three species food chain model with fear effect, AIMS Math. 5 (2020), 828–842. [20] S. Lima and L.M. Dill, Behavioral decisions made under the risk of predation: A review and prospectus, Canad. J. Zoo. 68 (1990), 619–640. [21] A.J. Lotka, Elements of mathematical biology, Dover Publications, 2011. [22] S. Lv and M. Zhao, The dynamic complexity of a three species food chain model, Chaos Solitons Fractals 37 (2008) 1469–1480. [23] R.M. May, Stability and complexity in model ecosystems, Princeton University Press, 2001. [24] X. Meng, R. Liu and T. Zhang, Adaptive dynamics for a non-autonomous Lotka-Volterra model with size-selective disturbance, Non. Anal.: Real. Wrold. Appl. 16 (2014), 202–213. [25] H. Molla, M.S. Rahman and S. Sarwardi, Dynamics of a predator-prey model with Holling type II functional response incorporating a prey refuge depending on both the species, Int. J. Nonl. Sc. Num. Simul. 20 (2019), no. 1, 89–104. [26] N. Mukherjee, S. Ghorai and M. Banerjee, Detection of turing patterns in a three species food chain model via amplitude equation, Commn. Non. Sc. Num. Sim. 69 (2019), 219–236.[27] J.D. Murray, Mathematical biology II: Spatial models and biomedical applications, Springer-Verlag, New York, 2001. [28] S. Pal, N. Pal, S. Samanta and J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Comp. 39 (2019), 100770. [29] P. Pandey, N. Pal, S. Samanta J. and Chattopadhyay, Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bif. Chaos. 28 (2018), 1850009. [30] E.C. Pielou, An introduction to mathematical ecology, John Wiley & Sons, 1969. [31] M.L. Rosenzweig, and R.H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Amer. Nat. 97 (1963), 209–223. [32] K. Sarkar and S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Comp. 42 (2020), 100826. [33] S.K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors-A mathematical study on prey-predator interactions, Appl. Math. Modl. 64 (2018), 1–14. [34] G. Seo and D.L. DeAngelis A predator-prey model with a Holling type I functional response including a predator mutual interference, J. Nonlinear Sci. 21 (2011), 811–833. [35] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol. 79 (1979), 83–99. [36] N. Sk, P.K. Tiwari, Y. Kang and S. Pal, A nonautonomous model for the interactive effects of fear, refuge and additional food in a prey-predator system, J. Bio. Syst. 29 (2021), 107–145. [37] N. Sk, P.K. Tiwari and S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation, Math. Comp. Simul. 192 (2022), 136–166. [38] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A.M. Rucklidge and M. Perc, Cyclic dominance in evolutionary games: A review, J. Royl. Soc. Intrf. 11 (2014), 20140735. [39] R.J. Taylor, Predation, Chapman & Hall, 1984. [40] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol. 73 (2016), 1179–1204. [41] D. Xiao and S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math. 61 (2001), 1445–1472. | ||
آمار تعداد مشاهده مقاله: 44,362 تعداد دریافت فایل اصل مقاله: 471 |