
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,981 |
تعداد دریافت فایل اصل مقاله | 7,656,415 |
New subclasses of bi-univalent functions associated with $q-$ calculus operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 172، دوره 13، شماره 2، مهر 2022، صفحه 2141-2149 اصل مقاله (431.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.22410.2357 | ||
نویسندگان | ||
Malathi Venkatesan؛ Vijaya Kaliappan* | ||
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Deemed to be University, Vellore-632 014, India | ||
تاریخ دریافت: 30 دی 1399، تاریخ بازنگری: 31 اردیبهشت 1401، تاریخ پذیرش: 23 خرداد 1401 | ||
چکیده | ||
In the present paper, new subclasses of bi-univalent functions associated with $q-$calculus operator are introduced and coefficient estimates for functions in these classes are obtained. Several new (or known) consequences of the results are also pointed out. | ||
کلیدواژهها | ||
Univalent function؛ q− calculus operator؛ Bi-univalent function؛ Bi-starlike function؛ Bi-convex function؛ Coefficient bounds and Subordination | ||
مراجع | ||
[1] A.Amourah, B.A. Frasin and T. Abdeljaward, Fekete-Szeg˝o inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces 2021 (2021), Article Id 5574673. [2] B. Ahmad, M.G. Khan, B.A. Frasin, M.K. Aouf, T. Abdeljawad, W.K. Mashwani and M. Arif, On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math. 6 (2021), no. 4, 3037–3052. [3] A. Aral, V. Gupta and R.P. Agrarwal, Applications of q-calculus in operator theory, Springer, New York, 2013. [4] M.K. Aouf, J. Dziok and J. Sokol, On a subclass of strongly starlike functions, Appl. Math. Lett. 24 (2011), 27–32. [5] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babe´s-Bolyai Math. 31 (1986), no. 2, 70–77. [6] H.O. G¨uney, G.Murugusundaramoorthy and Sok´o l, ¨ Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapient. Math. 10 (2018), 70–84. [7] F.H. Jackson, On q-functions and a certain difference operator. Trans. Royal Soc. Edin. 46 (1908), 253–281. [8] S. Kanns and D. R˘aducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca 64 (2014), no. 5, 1183–1196. [9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. [10] A.Y. Lashin, Coefficients estimates for two subclasses of analytic and bi-univalent functions, Ukrain. Math. J. 70 (2019), no. 9, 1484–1492. [11] W.C. Ma and D. Minda, A unified treatment of some special classes of functions, Proc. Conf. Complex Anal. Tianjin, 1992, pp. 157–169. [12] G. Murugusundaramoorthy, H.O. G¨uney and K. Vijaya, ¨ New subclasses of bi-univalent functions related to shelllike curves involving hypergeometric functions, Afr. Mat. 31 (2020), 1237—1249. [13] Z. Nehari, Conformal mapping, Mc Graw-Hill Book Co., New York, 1952. [14] M. Obradovic and N. Tuneski, On the starlike criteria defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 181 (2000), no. 24, 59–64. [15] M. Obradovic, T. Yaguchi and H. Saitoh, On some conditions for univalence and starlikeness in the unit disc, Rend. Math. Ser. 7 (1992), no. 12, 869–877. [16] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, G¨ottingen, 1975. [17] R.K. Raina and J. Sok´o l, Some properties related to a certain class of starlike functions, C. R. Acad. Sci. Paris Ser. I. 353 (2015), 973–978.[18] V.Ravichandran and K.Sharma, Sufficient conditions for starlikeness, J. Korean Math.Soc. 52 (2015), no. 4, 727–749. [19] H. Silverman, Convex and starlike criteria, Internat. J. Math and Math. Sci. 22 (1999), no. 1, 75–79. [20] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. [21] H.M. Srivastava, A.K. Wanas and R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry 13 (2021), 1230. 032003. [22] H.M. Srivastava, G. Murugusundaramoorty and S.M. El-Deeb, Faber polynomial coefficient estimates of bi-closeto-convex functions connected with Borel distribution of the Mittag-Leffler-type, J. Nonlinear Var. Anal. 5 (2021), 103-–118. [23] J. Sok´o l and J. Stankiewicz, Radius of convexity of some sub classes of strongly starlike functions, Fol. Sci. Univ. Tech. Res. 147 (1996), 101–105. [24] N. Tuneski,On the quotient of the representations of convexity and starlikeness, Math. Nachr. 248/249 (2003), 200–203. [25] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981. [26] A.K. Wanas and A. Alb Lupas, , Applications of Horadam polynomials on Bazileviˇc bi-univalent function satisfying subordinate conditions, IOP Conf. Ser. J. Phys. Conf. Ser. 1294 (2019), Article Id: 032003. | ||
آمار تعداد مشاهده مقاله: 43,746 تعداد دریافت فایل اصل مقاله: 415 |