
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,369 |
Sakaguchi type function defined by $(\mathfrak{p},\mathfrak{q})$-Derivative operator using Gegenbauer polynomials | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 177، دوره 13، شماره 2، مهر 2022، صفحه 2197-2204 اصل مقاله (673.53 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25973.3206 | ||
نویسندگان | ||
Baskaran S1؛ Saravanan G* 2؛ Yalcin Sibel3؛ VANITHAKUMARI B1 | ||
1Department of Mathematics, Agurchand Manmull Jain college, Meenambakkam, Chennai-600114, Tamil Nadu, India | ||
2Department of Mathematics, Patrician College of Arts and Science, Adyar, Chennai-600020, Tamil Nadu, India | ||
3Department of Mathematics, Bursa Uludag university, 16059, Bursa, Turkey | ||
تاریخ دریافت: 05 بهمن 1400، تاریخ بازنگری: 04 خرداد 1401، تاریخ پذیرش: 23 خرداد 1401 | ||
چکیده | ||
An introduction of a new subclass of bi-univalent functions involving Sakaguchi type functions defined by $(\mathfrak{ p},\mathfrak{q})$-Derivative operators using Gegenbauer polynomials have been obtained. Further, the bounds for initial coefficients $ |a_{2}|$, $| a_{3}| $ and Fekete Szeg\"{o} inequality have been estimated. | ||
کلیدواژهها | ||
Analytic function, Bi-Univalent function, (p؛ q)- Derivative operator, Sakaguchi type function, Gegenbauer polynomials | ||
مراجع | ||
[1] D.A. Brannan and J.Clunie, Aspects of contemporary complex analysis, Academic Press, 1980. [2] S. Baskaran, G. Saravanan and B. Vanithakumari, Sakaguchi type function defined by (p, q)-fractional operator using Laguerre polynomials, Palestine J. Math. 11 (2022), 41–47. [3] R. Chakrabarti and R.Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A, Math. Gen. 24 (1991), no. 13, 7-11. [4] A. Amourah, A. Alamoush and M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine J. Math. 10 (2021), no. 2, 625–632. [5] B.A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), no. 2, 206–211. [6] N.N. Lebedev, Special functions and their applications. Prentice-Hall, 1965. [7] M. Lewin, On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18 (1967), no. 1, 63–68. [8] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. 32 (1969), no. 2, 100–112.[9] S. Owa, T. Sekine and R. Yamakawa, Notes on Sakaguchi functions (Coefficient Inequalities in Univalent Function Theory and Related Topics), RIMS Kokyuroku 1414 (2005), 76-82. [10] S. Owa, T. Sekine and R.Yamakawa, On Sakaguchi type functions, Appl Math. Comput. 187 (2007), 356–361. [11] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan. 11 (1959), no. 1, 72–75. [12] M. Reimer, Multivariate polynomial approximation, Birkhauser, 2012. [13] G. Saravanan and K.Muthunagai, Co-efficient estimates for the class of bi-quasi-convex functions using Faber polynomials,. Far East J. Math. Sci. 102 (2017), no. 10, 2267–2276. [14] G. Saravanan and K. Muthunagai, Coefficient estimates and Fekete-Szeg¨o inequality for a subclass of Bi-univalent functions defined by symmetric Q-derivative operator by using Faber polynomial techniques, Period. Engin. Natural Sci. 6 (2018), no. 1, 241–250. [15] T.G. Shaba and A.K. Wanas, Coefficients bounds for a new family of bi-univalent functions associated with (U,V)-Lucas polynomials. Int.,J.Nonlinear Anal, Appl. 13 (2022), no. 1, 615–626. [16] A.K. Wanas, L.I Cotirlˇa, New applications of Gegenbauer polynomials on a new family of Bi-Bazileviˇc functions governed by the q-srivastava-Attiya operator, Math. 10 (2022), 1-9, Article ID 1309. [17] A.K. Wanas and A. Lupa¸s, Applications of Laguerre polynomials on a new family of bi-prestarlike functions, Symmetry 14 (2022), 1–10 , Article ID 645. [18] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990–994. [19] Q.H. Xu, H.G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461–11465. [20] S. Yal¸cin, K. Muthunagai and G. Saravanan, A subclass with bi-univalence involving (p,q)-Lucas polynomials and its coefficient bounds, Bol. Soc. Mat. Mex. 26 (2020), 1015–1022. | ||
آمار تعداد مشاهده مقاله: 44,380 تعداد دریافت فایل اصل مقاله: 468 |