| International Journal of Nonlinear Analysis and Applications | ||
| Article 182, Volume 13, Issue 2, January 0, Pages 2257-2269 PDF (446.01 K) | ||
| DOI: 10.22075/ijnaa.2021.23301.2517 | ||
| Receive Date: 30 April 2021, Revise Date: 29 November 2021, Accept Date: 03 December 2021 | ||
| References | ||
|
[1] R.P. Agarwal, D. O’Regan, and D.R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topol. Fixed Point Theory Appl., Springer, New York, NY, USA, 2009. [2] H. Attouch and J. Peypouquent, The rate of convergence of Nesterov’s accelarated forward - backward method is actually faster than 1 k2 ., SIAMJ. Optim. 26 (2016), 1824–1834.[3] A. Beck and M. Teboulle, A fast iterative shrinkage thresholding algorithm for linear inverse problem, SIAMJ. Imaging Sci. 2 (2009), 183–202. [4] R. I. Bot, E. R. Csetnek and C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math. Comput. 256 (2015), 472–487. [5] H.H. Bauschke and P.L Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin, 2011. [6] F.E. Browder and W.V. Petryshyn, construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228. [7] S. Banach, Th¶eorie des operations lineires, Warsaw, 1932. [8] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math. 3 (1922), 133–181. [9] R. Cacciopoli, Un teorem generale sull’esistenza di elementi uniti in una trans-formazione funzionale, Rend. Accad. Naz. Lincei 13 (1931), 498–502. [10] L. C. Ceng, A. Petrusel, C.F. Wen, J.C. Yao, Inertial-like subgradient extragradient methods for variational inequalities and fixed points of asymptotically nonexpansive and strictly pseudocontractive mappings, Math. 7 (2019) no. 9, Article Number: 860. [11] L.C. Ceng, A. Petrusel, X. Qin, J.C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optim. 70 (2021), no. 5-6, 1337–1358. [12] P. Chen, J. Huang and X. Zhang, A primal-dual fixed point algorithm for convex separable minimization with application to image restoration, Inverse Probl. 29 (2013). [13] W. L. Cruiz, A Residual Algorithm for Finding a Fixed Point of a Nonexpansive Mapping, Fixed Point Theory and Appl., (2018), Doi: 10.1007/2018/05964. [14] P. Cholamjiak and S. Suantai, Weak convergence theorems for a countable family of strict pseudocontractions in Banach spaces, Fixed Point Theory Appl. 2010 (2010), 1–16 [15] P. Cholamjiak and S. Suantai, Strong convergence theorems for a countable family of strict pseudocontractions in q−uniformly Banach spaces, Comput. Math. Appl. 62 (2011), no. 2, 787–796. [16] P. Cholamjiak and S. Suantai, Weak and strong convergence theorems for a countable family of strict pseudo-contractions in Banach spaces, Optim. 62 (2013), no. 2, 255–270. [17] C.E. Chidume and S.A. Mutangadura, An example of the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129 (2001), 2359–2363. [18] I. Cioranescu, Geometry of Banach spaces,duality mappings and nonlinear problems, Kluwer, Dordrecht, 1990. [19] C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer, London, UK, 2009. [20] Q.L. Dong, H.B. Yuan, C.Y. Je and Th.M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett. 12 (2016), doi.org/10.1007/s11590-016-1102-9 [21] Q.L. Dong and H.B. Yuan, Accelerated Mann and CQ algorithms for finding a fixed point of a nonexpansive mapping, Fixed Point Theory Appl. 125 (2015), Doi: 10.1186/s13663-015-0374-6 [22] Q.L. Dong, C.Y. Je and Th.M. Rassias, General inertial Mann algorithms and their convergence analysis for nonexpansive mappings, Appl. Nonlinear Anal. 134 (2018), Doi:10.1007/978-3-319-89815-5-7. [23] B. Halpern, Fixed points of nonexpansive maps, Bull. Am. Math. Soc., 73 (1967), 957-961. [24] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer Math. Soc. 44 (1974), 147–150. [25] M.H. Harbau, Inertial hybrid self-adaptive subgradient extragradient method for fixed point of quasi-ϕnonexpansive multivalued mappings and equilibrium problem, Adv. Theory Nonlinear Anal. Appl., 5 (2021), no. 4, 507–522. [26] T. Kato, Nonlinear semigroups and Evolution equations, J. Mtah. Soc. Japan 19, (1967), 508–520. [27] B. Leemon, Residual Algorithms: Reinforcement Learning with Function Approximatin, U.S. Air Force technical Report, Department of Computer Science, U.S. Air Force Academy, CO 80840-6234, (1995). [28] H. Liduka, Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation, SIAM J. Optim. 22 (2012), 862–878. [29] H. Liduka, Fixed point optimization algorithms for distributed optimization in networked systems, SIAM J. Optim. 23 (2013), 1–26. [30] D.A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis. 51 (2015), 311–325. [31] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.[32] P.E. Mange, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219 (2008), 223– 236. [33] C.A. Micchelli, L. Shen and Y. Xu, Proximity algorithms for image models; denoising, Inverse Probl. 27 (2011), no. 4. [34] J. Olaleru and G. Okeke, Convergence theorems on asymptotically demicontractive and hemicontractive mappings in the intermediate sense, Fixed Point Theory Appl. 2013 (2013), 352. [35] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. [36] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. 4 (1964), no. 5, 1–17 [37] E. Picard, M´emoire sur la th´eorie des ´equations aux d´eriv´ees partielles et la m´ethode des approximations successives, J. Math. Pures Appl. 6 (1890), 145–210. [38] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301–308. [39] Y. Yao, G. Marino and L. Muglia, A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality, Optim. 63 (2012), no. 4, 1–11. [40] S. Yekini, An iterative approximation of fixed points of strictly pseudocontracvtive mappings in Banach spaces, MATEMATHYKN BECHNK 2 (2015), 79–91. [41] H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal. 68 (2008), 2977–2983. | ||
|
Statistics Article View: 44,292 PDF Download: 50,445 |
||