
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,804 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Note on the Ψ-asymptotic relationships between Ψ-bounded solutions of two Lyapunov matrix differential equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 190، دوره 13، شماره 2، مهر 2022، صفحه 2361-2372 اصل مقاله (407.67 K) | ||
نوع مقاله: Review articles | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23405.2533 | ||
نویسنده | ||
Diamandescu Aurel* | ||
Department of Applied Mathematics, University of Craiova, Craiova, Romania | ||
تاریخ دریافت: 22 اردیبهشت 1400، تاریخ بازنگری: 31 تیر 1400، تاریخ پذیرش: 01 شهریور 1400 | ||
چکیده | ||
There are proved existence results for Ψ-asymptotic relationships between Ψ-bounded solutions of two Lyapunov matrix differential equations. | ||
کلیدواژهها | ||
Ψ-boundedness؛ Ψ-asymptotic relationships between Ψ-bounded solutions؛ Lyapunov matrix differential equations | ||
مراجع | ||
[1] R. Bellman, Introduction to matrix analysis, McGraw-Hill Book Company, Inc. New York, 1960. [2] P.N. Boi, Existence of Ψ-bounded solutions on R for nonhomogeneuos linear differential equations, Electron. J. Diff. Eqns. 2007 (2007), no. 52, 1–10. [3] F. Brauer and J.S.W. Wong, On asymptotic behavior of perturbed linear systems, J. Differ. Equ. 6 (1969), 142–153. [4] F. Brauer and J.S.W. Wong, On asymptotic relationships between solutions of two systems of ordinary differential equations, J. Differ. Equ. 6 (1969), 527–543. [5] W.A. Coppel, Stability and asymptotic behavior of differential equations, D.C. Heath and Company, Boston, 1965. [6] A. Diamandescu, On the Ψ-boundedness of the solutions of a linear system of ordinary differential equations, An. S¸tiint¸ifice Universit˘at¸ii ”Al. I. Cuza” Ia¸si, Tomul 48 (2002), 269–286. [7] A. Diamandescu, On the Ψ-instability of a nonlinear Volterra integro-differential system, Bull. Math. Soc. Sc, Math. Roumanie, Tome 46 (2003), no. 3-4, 103–119. [8] A. Diamandescu, On the Ψ-boundedness of the solutions of a nonlinear Lyapunov matrix differential equation, Appl. Sci. 19 (2017), 31–40. [9] A. Diamandescu, On Ψ-bounded solutions for a nonlinear Lyapunov matrix differential equation on R, Ana. Unive. Vest, Timi¸soara, Ser. Mat. Inf. 56 (2018), no. 2, 131–150. [10] A. Diamandescu, On the Ψ-asymptotic equivalence of the Ψ-bounded solutions of two Lyapunov matrix differential equations, ITM Web Conf., 34 (2020), 03006. [11] T.G. Hallam, On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. Math. J. 16 (1969), 353–363. [12] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons Ltd, Chichester, 1999. [13] M.S.N. Murty and G. Suresh Kumar, On Ψ− boundedness and Ψ− stability of matrix Lyapunov systems, J. Appl. Math. Comput. 26 (2008), 67–84 [14] O. Perron, Die Stabilit¨atsfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703–728. | ||
آمار تعداد مشاهده مقاله: 43,649 تعداد دریافت فایل اصل مقاله: 262 |