
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
Existence results of some p(u)-Laplacian systems | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 245، دوره 13، شماره 2، مهر 2022، صفحه 3073-3082 اصل مقاله (396.99 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.27135.3509 | ||
نویسندگان | ||
Said Ait Temghart* ؛ Chakir Allalou؛ Khalid Hilal | ||
LMACS, FST of Beni Mellal, Sultan Moulay Slimane University, Morocco | ||
تاریخ دریافت: 20 اردیبهشت 1401، تاریخ پذیرش: 13 تیر 1401 | ||
چکیده | ||
In this paper, we consider the existence of weak solutions for some $p(u)$-Laplacian problems with Dirichlet boundary conditions. Here the exponent of nonlinearity $p$ depends on the solution $u$ itself. Existence results for the associated boundary-value local problem are given by using a singular perturbation technique combined with the theory of Sobolev spaces with exponent variables. | ||
کلیدواژهها | ||
Local problem؛ weak solution؛ Sobolev spaces | ||
مراجع | ||
[1] S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions. Existence, Uniqueness, Localization, Blow-up, Atlantis Press, Paris, 2015. [2] S.N. Antontsev, J.F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no 1, 19–36. [3] B. Andreianov, M. Bendahmane, S. Ouaro, Structural stability for variable exponent elliptic problems. II. The p(u)-Laplacian and coupled problems, Nonlinear Anal. 72 (2010), no. 12, 4649–4660. [4] P. Blomgren, T. Chan, P. Mulet and C. Wong, Total variation image restoration: Numerical methods and extensions, Proc. IEEE Int. Conf. Image Process. vol. 3. IEEE Comput. Soc. Press, Piscataway, 1997, pp. 384–387. [5] E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K. Vixie, Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion, Adv. Comput. Math. 31 (2007), 61–85. [6] M. Chipot and H. B. de Oliveira, Some Results On The p(u)-Laplacian Problem, Math. Annal. 375 (2019), no. 1, 283–306. [7] M. Chipot , Elliptic Equations: An Introductory Course, Birkh¨auser, Basel, 2009. [8] M. Chipot and J.F. Rodrigues, On a class of non-linear nonlocal elliptic problems, M2AN 26 (1992), no. 3, 447-–468. [10] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Birkh¨auser/Springer, Heidelberg, 2013. [11] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383—1406. [12] L. Diening, P. Harjulehto, P. H¨ast¨o and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. [13] R. Glowinski, R. Marrocco, Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisationdualit´e, d’une classe de probl`emes de Dirichlet non lin´eaires, RAIRO Ana. Numer. 9 (1975), 41–76. [14] B. Lovat, Etude de quelques probl`emes paraboliques non locaux, Th`ese, Universit´e de Metz, 1995. [15] A.L. Skubachevskii, Elliptic functional differential equations and applications, Birkh¨auser, 1997. [16] K. Rajagopal and M. Ruzicka, Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59—78. [17] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. [18] J. T¨urola, Image denoising using directional adaptive variable exponents model, J. Math. Imaging. Vis. 57 (2017), 56–74. [19] V.V. Zhikov, On the density of smooth functions in Sobolev–Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226 (2004), 67-–81. [20] V.V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997-1998), no. 1, 105–116. | ||
آمار تعداد مشاهده مقاله: 44,164 تعداد دریافت فایل اصل مقاله: 337 |