
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,757 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
On asymptotic and Hyers-Ulam stability of Hilfer fractional initial value problem involving a $(p_{1} ,p_{2},\dots, p _{n})$-Laplacian operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 219، دوره 13، شماره 2، مهر 2022، صفحه 2723-2742 اصل مقاله (487.55 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25533.3046 | ||
نویسنده | ||
Nadir Benkaci-Ali* | ||
University M'Hamed Bougara of Boumerdes, Algeria | ||
تاریخ دریافت: 18 آذر 1400، تاریخ بازنگری: 12 اسفند 1400، تاریخ پذیرش: 20 اسفند 1400 | ||
چکیده | ||
In this paper, we investigate the existence, asymptotic, Hyers-Ulam, and semi-Hyers-Ulam-Rassias stability results for the Hilfer fractional initial value problem involving the (p$_{1},$p$_{2}...$p$_{n}$)-Laplacian operator by using the fixed point arguments. | ||
کلیدواژهها | ||
Hyers-Ulam stability؛ generalized Duffing equation؛ positive solution؛ fixed point | ||
مراجع | ||
[1] R.P. Agarwal and D. O’Regan, Infinite interval problems for differential, difference and integral equations, Kluwer Academic Publisher, Dordrecht, 2001. [2] S. Ai, Y. Su, Q. Yuan and T. Li, Existence of solutions to fractional differential equations with fractional-order derivative terms, J. Appl. Anal. Comput. 11 (2021), no. 1, 486–520. [3] A. Zada, J. Alzabut, H. Waheed and I.L. Popa, Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions, Adv. Difference Equations 2020 (2020), no. 1, 1–50. [4] A. Zada, S. Ali and Y. Li, Ulam-type stability for a class of implicit fractional differential equations with noninstantaneous integral impulses and boundary condition, Adv. Difference Equations 2017 (2017), no. 1, 1–26. [5] H. Beddani, M. Beddani and Z. Dahmani, Nonlinear differential problem with p-Laplacian and via Phi-Hilfer approach, solvability and stability analysis, Eur. J. Math. Anal. 1 (2021), 164–181. [6] N. Benkaci-Ali, Positive solution for the integral and infinite point boundary value Problem for fractional-order differential equation involving a generalized ϕ-Laplacian operator, Abstr. Appl. Anal. 2020 (2020).[ 7] N. Benkaci-Ali, Existence of exponentially growing solution and asymptotic stability results for Hilfer fractional (p1,p2,...pn)-Laplacian initial value problem with weighted duffing oscillator, Dyn. Syst. Appl. 30 (2021), no. 12, 1763–1778. [8] C. Cheng, Z. Feng and Y. Su, Positive solutions of fractional differential equations with derivative terms, Electronic J. Differ. Equ. 215 (2012), 1–27. [9] C.S. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl. 62 (2011), no. 3, 1251–1268. [10] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973. [11] D. Inoan and D. Marian, Semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of order I with a convolution type kernel via Laplace transform, Symmetry 13 (2021), no. 1, 2181. [12] D. Guo and V. Lakshmikantaham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. [13] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. [14] A. Greenhill, Stability of orbits, Proc. Lond. Math. Soc. 22 (1890/91), 264–305. [15] H.A. Wahash and S.K. Panchal, Positive solutions for generalized Caputo fractional differential equations using lower and upper solutions method, J. Frac. Calc. Nonlinear Syst. 1 (2020), no. 1, 1–12. [16] H. Khan, T. Abdeljawad, M. Aslam, R. Ali Khan and A. Khan, Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Difference Equations 2019 (2019), no. 1, 1–13. [17] H. Khan, W. Chen, A. Khan, T.S. Khan and Q.M. Al-Madlal, Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Difference Equations 2018 (2018), no. 1, 1–16. [18] J. Huang, S. M Jung and Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc. 52 (2015), no. 2, 685–697. [19] J. Valein, On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback, Math. Control Related Fields 28 (2021). [20] L. Sun, Hyers-Ulam stability of ϵ-isometries between the positive cones of Lp-spaces, J. Math. Appl. 487 (2020), no. 2, 124014. [21] M. Ahmad, A. Zada and J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian, Adv. Difference Equations 2019 (2019), no. 1, 1–22. [22] N. Halidias and I.S. Stamatiou, A note on the asymptotic stability of the semi-discrete method for stochastic differential equations, Monte Carlo Meth. Appl. 28 (2022), no. 1, 13–25. [23] F.I. Njoku and P. Omari, Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions, Appl. Math. Comput. 135 (2003), 471–490. [24] R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Unione Mat. Ital. 7 (1989), 533–546. [25] A.G.M. Selvam, D. Baleanu, J. Alzabut, D. Vignesh and S. Abbas, On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum, Adv. Difference Equations 2020 (2020), Article Number 456. [26] F.R. Sharpe, On the stability of the motion of a viscous liquid, Trans. Amer. Math. Soc. 6 (1905), no. 4, 496–503. [27] S. Omar Shah and A. Zada, Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales, Appl. Math. Comput. 359 (2019), 202–213. [28] S. Ulam, A Collection of Mathematical Problems, New York, NY, Interscience Publishers, 1960. [29] J. Vanterler, C. Sousa and E. Capelas de Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91. | ||
آمار تعداد مشاهده مقاله: 44,096 تعداد دریافت فایل اصل مقاله: 374 |