
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,919 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
Differential subordination and superordination of a $q$-derivative operator connected with the $q$-exponential function | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 225، دوره 13، شماره 2، مهر 2022، صفحه 2795-2806 اصل مقاله (439.02 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.27487.3618 | ||
نویسندگان | ||
Sarem Hazim Hadi* 1، 2؛ Maslina Darus2 | ||
1Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah 61001, Iraq | ||
2Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia | ||
تاریخ دریافت: 18 اردیبهشت 1401، تاریخ بازنگری: 24 خرداد 1401، تاریخ پذیرش: 24 تیر 1401 | ||
چکیده | ||
In this article, we define a $q$-derivative operator of univalent functions associated with the $q$-exponential function. Moreover, we introduce differential subordination and differential superordination for the subordination class defined by this operator. Sandwich-type theorems of several known results also are derived by applying these results. | ||
کلیدواژهها | ||
$q$-exponential function؛ $q$-derivative Operator؛ best dominant؛ best subordination؛ and sandwich-type theorems | ||
مراجع | ||
[1] RM. Ali, V. Ravichandran, MH. Khan and K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15 (2004), 87–94. [2] AA. Attiya and MF. Yassen, Some subordination and superordination results associated with generalized Srivastava-Attiya operator, Filomat 31 (2017), 53—60. [3] A.A. Attiya, M.K. Aouf, E.E. Ali and M.F. Yassen, Differential Subordination and Superordination Results Associated with Mittag–Leffler Function, Math. 9 (2021), 226. [4] F.M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, J. Math. Math. Sci. 27 (2004), 1429–1436. [5] M.K. Aouf, A.O. Mostafa and R.E. Elmorsy, Certain subclasses of analytic functions with varying arguments associated with q-difference operator, Afr. Mat. 32 (2021), 621-–630. [6] S.S. Billing, A subordination theorem with applications to analytic functions, Bull. Math. Ana. App. 3 (2011), 1–8. [7] T. Bulboac˘a, A class of superordination-preserving integral operators, Indag. Math., N.S. 13 (2002), 301-–311. [8] T. Bulboac˘a, Classes of first order differential superordinations, Demonst. Math. 35 (2002), 287-–292. [9] W.S. Chung and H.J. Kang, The q-gamma, q-beta functions, and q-multiplication formula, J. Math. Phys. 35 (1994), 4268. [10] J.L. Cie´sli´nski, Improved q-exponential and q-trigonometric functions, Appl. Math. Lett. 24 (2011), 2110–2114. [11] M. Darus and R.W. Ibrahim, On applications of differential subordination and differential operator, J. Math. Statist. 8 (2012), 165–168. [12] R.M. El-Ashwah, M.K. Aouf and T. Bulboaca, Differential subordinations for classes of meromorphic p-valent functions defined by multiplier transformations, Bull. Aust. Math. Soc. 83 (2011), 353-–368. [13] S. Elhaddad, H. Aldweby and M. Darus, On certain subclasses of analytic functions involving differential operator, Jnanabha. 48 (2018), 55-–64. [14] S.M. El-Deeb and T. Bulboaca, Differential sandwich-type results for symmetric functions connected with a qanalog integral operator, Math. 7 (2019), 1185. [15] B.A. Frasin and G. Murugusundaramoorthy, A subordination results for a class of analytic functions defined by q-differential operator, Ann. Univ. Paedagog. Crac. Stud. Math. 19 (2020), 53–64. [16] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43 (2017), 475-–487. [17] S.P. Goyal, P. Goswami and H. Silverman, Subordination and superordination results for a class of analytic multivalent functions, Int. J. Math. Math. Sci. 2008 (2008), Article ID 561638, 1–12. [18] S.H. Hadi, M. Darus, C. Park, J.R. Lee., Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function, AIMS Math. 7 (2022), 11772–11783. [19] F.H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh. 46 (1908), 253—281. [20] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193—203. [21] S. Kanas and D. Raducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca 64 (2014), 1183—1196. [22] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang and S.U. Rehman, Some applications of a new integral operator in q-analog for multivalent functions, Math. 7 (2019), 1178. [23] B. Khan, H.M. Srivastava, M. Tahir, M. Darus, Q.Z. Ahmad and N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math. 6 (2012), 1024—1039. [24] A.A. Lupas and G.I. Oros, Differential subordination and superordination results using fractional integral of confluent hypergeometric function, Symmetry 13 (2021), 327. [25] M.S. McAnally, q-exponential and q-gamma functions, II. q-gamma functions, J. Math. Phys. 36 (1995), 574. [26] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York, Basel, 2000. [27] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Variabl. Ellipt. Equ.. 48 (2003), 815-–826. [28] A.K. Mishra and M.M. Soren, Sandwich results for subclasses of multivalent meromorphic functions associated with iterations of the Cho-Kwon-Srivastava transform, Filomat 33 (2019), 255-–266. [29] G. Murugusundaramoorthy and N. Magesh, Differential subordinations and superordinations for analytic functions defined by the Dziok-Srivastava linear operator, J. Ineq. Pure App. Math. 7 (2006), no. 4, Article 152. [30] GS. S˘al˘agean, Subclasses of univalent functions, Complex Analysis—Fifth Romanian-Finnish Seminar, Springer, Berlin, Heidelberg, 1983, pp. 362–372. [31] S.A. Shah and K.I. Noor, Study on the q-analogue of a certain family of linear operators, Turk. J. Math. 43 (2019), 2707–2714. [32] H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), 1–18. [33] T.N. Shanmugam, S. Srikandan, B.A. Frasin and S. Kavitha, On sandwich theorems for certain subclasses of analytic functions involving Carlson-Shaffer operator, J. Korean Math. Soc. 45 (2008), 611–620. [34] TN. Shanmugam, S. Sivasubramanian, and M. Darus, Subordination and Superordination Results for Φ-Like Functions, J. Ineq. Pure and App. Math. 8 (2007), Article ID 20. [35] A. Oshah and M. Darus, Differential sandwich theorems with new generalized derivative operator, Adv. Math. Sci. 3 (2014), 117–125. [36] AK. Wanas and M. Darus, Applications of fractional derivative on a differential subordinations and superordinators for analytic functions associated with differential Operator, Kragujevac J. Math. 45 (2021), 379-–392. | ||
آمار تعداد مشاهده مقاله: 44,071 تعداد دریافت فایل اصل مقاله: 468 |