
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,919 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
On the value distribution of the differential polynomial $\phi f^{n}f^{(k)}-1$ | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 233، دوره 13، شماره 2، مهر 2022، صفحه 2909-2922 اصل مقاله (435.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.23179.2488 | ||
نویسندگان | ||
Anjan Sarkar1؛ Pulak Sahoo* 2 | ||
1Adarsh Krishak Inter College, Sihatikar, S.K. Nagar, India | ||
2Department of Mathematics, University of Kalyani, Kalyani, Nadia, India | ||
تاریخ دریافت: 28 فروردین 1400، تاریخ پذیرش: 27 تیر 1401 | ||
چکیده | ||
In the paper, we study the value distribution of the differential polynomial $\phi f^{n} f^{(k)} -1$, where $f(z)$ is a transcendental meromorphic function, $\phi(z) (\not \equiv 0)$ is a small function of $f(z)$ and $n (> 2), k (\geq 1)$ are integers. We prove an inequality which will give an upper bound for the characteristic function $T(r,f)$ in terms of reduced counting function only. | ||
کلیدواژهها | ||
Value distribution؛ Meromorphic function؛ Differential polynomial | ||
مراجع | ||
[1] G. Biswas and P. Sahoo, A note on the value distribution of ϕf 2f (k) − 1, Mat. Stud. 55 (2021), 64–75. [2] J. Clunie, On the integral and meromorphic functions, J. London Math. Soc. 37 (1962), 17–22. [3] W.K. Hayman, Meromorphic Function, The Clarendon Press, Oxford, 1964. [4] X. Huang and Y. Gu, On the value distribution of f 2f (k) , J. Aust. Math. Soc. 78 (2005), 17-26. [5] Y. Jiang, A note on the value distribution of f(f ′ ) n for n ≥ 2. Bull. Korean Math. Soc. 53 (2016), 365–371. [6] H. Karmakar and P. Sahoo, On the value distribution of f nf (k) − 1, Results Math. 73 (2018), no. 3, 1–14. [7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/New York, 1993. [8] E. Mues, Uber ein problem von Hayman, Math. Z. 164 (1979), 239–259. [9] J.P. Wang, On the value distribution of ff(k) , Kyungpook Math. J. 46 (2006), 169–180. [10] J.F. Xu and H.X. Yi, A precise inequality of differential polynomials related to small functions, J. Math. Inequality, 10 (2016), 971–976. [11] J.F. Xu, H.X. Yi and Z.L. Zhang, Some inequalities of differential polynomials, Math. Inequal. Appl. 12 (2009), 99–113. [12] J.F. Xu, H.X. Yi and Z.L. Zhang, Some inequalities of differential polynomials II, Math. Inequal. Appl. 14 (2011), 93–100. [13] L. Yang, Value Distribution Theory, Springer, Berlin, Heidelberg, New York, 1993. [14] H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995. [15] Q.D. Zhang, A growth theorem for meromorphic functions, J. Chengdu Inst. Meteor. 20 (1992), 12–20. [16] Q.D. Zhang, On the zeros of the differential polynomial ϕ(z)f2(z)f′(z) − 1 of a transcendental meromorphicfunction f(z), J. Chengdu Ins. Meteor. 23 (1992), 9–18. | ||
آمار تعداد مشاهده مقاله: 43,931 تعداد دریافت فایل اصل مقاله: 304 |