
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,933 |
تعداد دریافت فایل اصل مقاله | 7,656,389 |
Approximating the matrix exponential, sine and cosine via the spectral method | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 226، دوره 14، شماره 1، فروردین 2023، صفحه 2881-2900 اصل مقاله (1.2 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.26081.3222 | ||
نویسندگان | ||
Arezo Shakeri1؛ Mahmoud Behroozifar* 2 | ||
1Department of Mathematics and Physics, Faculty of Science and Technology, University of Stavanger, Stavanger, Rogaland, Norway | ||
2Department of Mathematics, Faculty of Science, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran | ||
تاریخ دریافت: 08 بهمن 1400، تاریخ بازنگری: 09 تیر 1401، تاریخ پذیرش: 26 تیر 1401 | ||
چکیده | ||
This article is arranged to introduce three different algorithms for computing the matrix exponential, cosine and sine functions $At$ for $0\leq t \leq b$, for all $b \in \mathbb{R^+}$. To achieve this purpose, we deal with the spectral method based on Bernstein polynomials. Bernstein polynomials are briefly introduced and utilized to approximate the functions. The operational matrix of integration of Bernstein polynomials is stated and employed to reduce the dynamic systems to the linear algebraic systems. It is required to solve $n$ linear algebraic systems for evaluating the matrix functions. By presenting the CPU time, it is displayed that the methods require a low amount of running time. Also, error analysis is discussed in detail. The outstanding point of this method is that the approximate exponential, cosine and sine matrix $At_0$, for all $t_0\in[0, L]$ can be obtained with only one execution of the algorithm. These three different algorithms have common parts that can be used to practically reduce the computational volume. Some examples are provided to show the high performance of the methods. | ||
کلیدواژهها | ||
Matrix exponential function؛ Matrix cosine function؛ Matrix sine function؛ Spectral method؛ Operational matrix of integration؛ Bernstein polynomial | ||
مراجع | ||
[1] A.H. Al-Mohy and N.J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl. 31 (2010), 970–989. [19] S.M. Serbin and S.A. Blalock, An algorithm for computing the matrix cosine, SIAM J. Sci. Statist. Comput. 1 (1980), no. 2, 198–204. | ||
آمار تعداد مشاهده مقاله: 17,117 تعداد دریافت فایل اصل مقاله: 512 |