
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,938 |
تعداد دریافت فایل اصل مقاله | 7,656,396 |
Inequalities for the rational functions with no Poles on the unit circle | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 133، دوره 14، شماره 1، فروردین 2023، صفحه 1727-1735 اصل مقاله (355.95 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25770.3124 | ||
نویسندگان | ||
Uzma Mubeen Ahanger* ؛ Wali Mohammad Shah؛ Lubna Wali Shah | ||
Department of Mathematics, Central University of Kashmir, Ganderbal-191201, Jammu and Kashmir, India | ||
تاریخ دریافت: 20 دی 1400، تاریخ پذیرش: 09 خرداد 1401 | ||
چکیده | ||
Let $\mathcal{R}_{n}$ be the set of rational functions with prescribed poles. It is known that if $r \in \mathcal{R}_{n},$ such that $r(z)\neq 0$ in $ |z|<1,$ then \begin{align*} \sup_{|z|=1}|r^{'}(z)|\leq \frac{|\mathcal{B}^{'}(z)|}{2}\sup_{|z|=1}|r(z)| \end{align*} and in case $r(z)=0$ in $|z|\leq 1,$ then \begin{align*} \sup_{|z|=1}|r^{'}(z)|\geq \frac{|\mathcal{B}^{'}(z)|}{2}\sup_{|z|=1}|r(z)|, \end{align*} where $\mathcal{B}(z)$ is the Blashke product. The main aim of this paper is to relax the condition that all poles of $r(z)$ lie outside the unit circle and instead assume their location anywhere off the unit circle in the complex plane $\mathbb{C}. $ The results so obtained besides the above inequalities generalize some other well-known estimates for the derivative of rational functions $r \in \mathcal{R}_{n}$ with prescribed poles and restricted zeros. | ||
کلیدواژهها | ||
Inequalities؛ Polynomials؛ Rational functions؛ Off the unit circle؛ Poles؛ Zeros | ||
آمار تعداد مشاهده مقاله: 17,246 تعداد دریافت فایل اصل مقاله: 325 |