
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,827 |
تعداد دریافت فایل اصل مقاله | 7,656,340 |
$H(.,.)$-$\varphi$-$\eta$-accretive operator with an application to a system of generalized variational inclusion problems in $q$-uniformly smooth Banach spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 14، دوره 14، شماره 6، شهریور 2023، صفحه 181-195 اصل مقاله (444.15 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24922.3029 | ||
نویسندگان | ||
Iqbal Bhat Mohd* 1؛ Zahoor Bisma2؛ Ahmad Malik Mudasir1 | ||
1Department of Mathematics, University of Kashmir South Campus, Anantnag-192101, J & K, India | ||
2Department of Mathematics, Cluster University, Srinagar-190008, J & K, India | ||
تاریخ دریافت: 13 آذر 1400، تاریخ بازنگری: 06 مهر 1401، تاریخ پذیرش: 08 مهر 1401 | ||
چکیده | ||
In this paper, we study a new system of generalized variational-like inclusion problems involving generalized $H(\cdot,\cdot)$-$\varphi$-$\eta$-accretive operators in real $q$-uniformly smooth Banach spaces. We define the resolvent operator associated with $H(\cdot,\cdot)$-$\varphi$-$\eta$-accretive operator and prove it is single-valued and Lipschitz continuous. Moreover, we suggest a perturbed Mann-type iterative algorithm with errors for approximating the solution of a system of generalized variational-like inclusion problems. Furthermore, we discuss the convergence and stability analysis of the iterative sequence generated by the algorithm. | ||
کلیدواژهها | ||
$H(\cdot؛ \cdot)$-$\varphi$-$\eta$-accretive operator؛ $q$-uniformly smooth Banach spaces؛ Resolvent operator technique؛ Perturbed Mann-type iterative algorithm؛ Convergence analysis؛ Stability analysis | ||
مراجع | ||
[1] R. Ahmad and M. Dilshad, H(・, ・)-ϕ-η-accretive operators and generalized variational-like inclusions, Amer. J. Oper. Res. 1 (2011), 305–311. [2] M.I. Bhat, M.A. Malik and B. Zahoor, Krasnoselskii-type approximation solvability of a generalized Cayley inclusion problem in semi-inner product space, Elec. J. Math. Anal. Appl. 10 (2022), no. 2, 46–60. [3] M.I. Bhat, S. Shafi and M.A. Malik, H-mixed accretive mapping and proximal point method for solving a system of generalized set-valued variational inclusions, Numer. Func. Anal. Optim. 42 (2021), no. 8, 955–972. [4] M.I. Bhat and B. Zahoor, Existence of solution and iterative approximation of a system of generalized variationallike inclusion problems in semi-inner product spaces, Filomat 31 (2017), no. 19, 6051–6070. [5] X.P. Ding and C.L. Lou, Perturbed proximal point algorithms for generalized quasi-variational-like inclusions, J. Comput. Appl. Math. 113 (2000), 153–165. [6] YP. Fang and NJ. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795–803. [7] G. Fichera, Problemi elastostalici con vincoli unilaterli: Il problema de Singnorini con ambigue condizioni alcontorno, Atti. Acad. Naz. Lincei Mem. cl. Sci. Mat. Nat. Sez. 7 (1964), no. 8, 91–140. [8] N.J. Huang and Y.P. Fang, Generalized m-accretive mappings in Banach spaces, J. Sichuan. Univ. 38 (2001), no. 4, 591–592. [9] K.R. Kazmi, N. Ahmad and M. Shahzad, Convergence and stability of an iterative algorithm for a system of generalized implicit variational-like inclusions in Banach spaces, Appl. Math. Comput. 218 (2012), 9208–9219. [10] K.R. Kazmi and M.I. Bhat, Iterative algorithm for a system of nonlinear variational-like inclusions, Comput. Math. Appl. 48 (2004), no. 12, 1929–1935. [11] K.R. Kazmi and M.I. Bhat, Convergence and stability of iterative algorithms for generalized set-valued variationallike inclusions in Banach spaces, Appl. Math. Comput. 166 (2005), 164–180. [12] K.R. Kazmi, M.I. Bhat and N. Ahmad, An iterative algorithm based on M-proximal mappings for a system of generalized implicit variational inclusions in Banach spaces, J. Comput. Appl. Math. 233 (2009), 361–371. [13] KR. Kazmi and FA. Khan, Iterative approximation of a unique solution of a system of variational-like inclusions in real q-uniformly smooth Banach spaces, Nonlinear Anal. 67 (2007), 917–929. [14] K.R. Kazmi, F.A. Khan and M. Shahzad, A system of generalized variational inclusions involving generalized H(・, ・)-accretive mapping in real q-uniformly smooth Banach spaces, Appl. Math. Comput. 217 (2011), 9679–9688. [15] F.A. Khan, A.S. Aljohani, M.G. Alshehri and J. Ali, A random generalized nonlinear implicit variational-like inclusion with random fuzzy mappings, Nonlinear Funct. Anal. Appl. 26 (2021), no. 4, 717–731. [16] JK. Kim, MI. Bhat and S. Shafi, Convergence and stability of perturbed Mann iterative algorithm with error for a system of generalizes variational-like inclusion problems, Commun. Math. Appl. 12 (2021), no. 1, 29–50. [17] J.K. Kim, M.I. Bhat and S. Shafi, Convergence and stability of iterative algorithm of system of generalized implicit variational-like inclusion problems using (θ, φ, γ)-relaxed cocoercivity, Nonlinear Funct. Anal. Appl. 26 (2021), no. 4, 749–780. [18] L.S. Liu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114–125. [19] Z. Liu, RP. Agarwal and SM. Kang, On perturbed three-step iterative algorithm for completely generalized nonlinear mixed quasivariational inclusions, Dyn. Contin. Discrete impuls. Syst. Ser. A Math. Anal. 15 (2008), no. 2, 229–241. [20] Z. Liu, S.M. Kang and J.S. Ume, The solvability of a class of general nonlinear implicit variational inequalities based on perturbed three-step iterative processes with errors, Fixed Point Theory Appl. 2008 (2008), Article ID 634921. [21] Z. Liu, M. Liu, SM. Kang and S. Lee, Perturbed Mann iterative method with errors for a new system of generalized nonlinear variational-like inclusions, Math. Comput. Modell. 51 (2010), 63–71. [22] X.P. Luo and N.J. Huang, (H, ϕ)-η-monotone operators in Banach spaces with an application to variational inclusions, Appl. Math. Comput. 216 (2010), 1131–1139. [23] O. Osilike, Stability for the Ishikawa iteration procedure, Indian J. Pure Appl. Math. 26 (1995), no. 10, 937–945. [24] G. Stampacchia, Formes bilinearies coercitives sur les ensembles convexes, Compt. Rend. Acad. Sci. Paris 258 (1964) 4413–4416. [25] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127–1138. [26] Z. Xu and Z. Wang, A generalized mixed variational inclusion involving (H(・, ・), η)-monotone operators in Banach spaces, J. Math. Res. 2 (2010), no. 3, 47–56. [27] L.C. Zeng, An iterative method for generalized nonlinear set-valued mixed quasi-variational inequalities with Hmonotone mappings, Comput. Math. Appl. 54 (2007), 476–483. [28] L.C. Zeng, S.M. Guu and J.C. Yao, Characterization of H-monotone operators with applications to variational inclusions, Comput. Math. Appl. 50 (2005), 329–337. [29] Y.Z. Zou and N.J. Huang, H(・, ・)-accretive operators with an application for solving variational inclusions in Banach spaces, Appl. Math. Comput. 204 (2008), 809–816. [30] Y.Z. Zou and N.J. Huang, A new system of variational inclusions involving H(・, ・)-accretive operator in Banach spaces, Appl. Math. Comput. 212 (2009), 135–144. | ||
آمار تعداد مشاهده مقاله: 16,241 تعداد دریافت فایل اصل مقاله: 272 |