
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,728 |
تعداد دریافت فایل اصل مقاله | 7,656,157 |
Infinitely many solutions for a nonlinear equation with Hardy potential | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 15، دوره 14، شماره 7، مهر 2023، صفحه 173-178 اصل مقاله (356.17 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.7047 | ||
نویسندگان | ||
Saeid Shokooh* ؛ S.Kh. Hossini Asl؛ M. Shahini | ||
Department of Mathematics, Faculty of Sciences, Gonbad Kavous University, Gonbad Kavous, Iran | ||
تاریخ دریافت: 19 اسفند 1400، تاریخ بازنگری: 21 مرداد 1401، تاریخ پذیرش: 18 شهریور 1401 | ||
چکیده | ||
In this article, by using critical point theory, we prove the existence of infinitely many weak solutions for a nonlinear problem with Hardy potential. Indeed, intervals of parameters are determined for which the problem admits an unbounded sequence of weak solutions. | ||
کلیدواژهها | ||
weak solutions؛ Navier boundary conditions؛ $p$-triharmonic operators | ||
مراجع | ||
[1] G.A. Afrouzi and S. Shokooh, Existence of infinitely many solutions for quasilinear problems with a p(x)-biharmonic operator, Electron. J. Differ. Equ. 317 (2015), 1–14. [2] G. Bonanno and G. D’Agui, A Neumann boundary value problem for the Sturm-Liouville equation, Appl. Math. Comput. 208 (2009), 318–327. [3] G. Bonanno and B.Di Bella, Infinitely many solutions for a fourth-order elastic beam equation, Nodea Nonlinear Differ. Equ. Appl. 18 (2011), 357–368. [4] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), 1–20. [5] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the p-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 737–752. [6] G. Bonanno, G. Molica Bisci and D. O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Model. 52 (2010), 152–160. [7] G. Bonanno, G. Molica Bisci and V. Radulescu, Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlics-Sobolev spaces, C. R. Acad. Sci. Paris., Ser. I 349 (2011), 263–268. [8] E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes 67 (2000), 479–486. [9] B. Rahal, Existence results of infinitely many solutions for p(x)−Kirchhoff type triharmonic operator with Navier boundary conditions, J. Math. Anal. Appl. 478 (2019), 1133–1146. [10] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401–410. [11] S. Shokooh, On a nonlinear differential equation involving the p(x)−triharmonic operator, J. Nonlinear Funct. Anal., 2020 (2020), 1–11. [12] M. Xu and Ch. Bai, Existence of infinitely many solutions for perturbed Kirchhoff type elliptic problems with Hardy potential, Electron. J. Differ. Equ. 2015 (2015), 1–15. | ||
آمار تعداد مشاهده مقاله: 16,418 تعداد دریافت فایل اصل مقاله: 267 |