
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,722 |
تعداد دریافت فایل اصل مقاله | 7,656,153 |
Hyers-Ulam stability and well-posedness for fixed point problems on quasi $b$-metric spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 8، دوره 14، شماره 2، اردیبهشت 2023، صفحه 101-110 اصل مقاله (399.11 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25875.3149 | ||
نویسندگان | ||
Qusuay Alqifiary1؛ Hassen Aydi* 2، 3 | ||
1Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Diwaniya, Iraq | ||
2Institut Superieur d'Informatique et des Techniques de Communication, Universite de Sousse, Hammam Sousse 4000, Tunisia | ||
3China Medical University Hospital, China Medical University, Taichung 40402, Taiwan | ||
تاریخ دریافت: 21 دی 1400، تاریخ بازنگری: 03 فروردین 1401، تاریخ پذیرش: 12 فروردین 1401 | ||
چکیده | ||
In this paper, we ensure the existence of a unique fixed point in quasi $b$-metric spaces for some contraction mappings requiring the concept of $\Psi ^ {*}$-admissibility. The Ulam-Hyers stability and well-posedness of these fixed point results have been studied and investigated. The obtained results generalize and extend many known results in the literature. | ||
کلیدواژهها | ||
Quasi $b$-metric space؛ Fixed point؛ Ulam-Hyers stability؛ Well posedness | ||
مراجع | ||
[1] Z. Abbasbeygi, A. Bodaghi and A. Gharibkhajeh, On an equation characterizing multi-quartic mappings and its stability, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 991–1002.
[2] H. Aydi, N. Bilgili and E. Karapinar, Common fixed point results from quasi-metric spaces to G-metric spaces, J. Egypt. Math. Soc. 23 (2015), 356–361. [3] J. Brzdek, J. Chudziak and Z. Pales, A fixed point approach to stability of functional equations, Nonlinear Anal.74 (2011), no. 17, 6728-–6732. [4] J. Brzdek and K. Ciepliski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), no. 18, 6861-–6867. [5] J. Brzdek and K. Cieplinski, A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl. 400 (2013), no. 1, 68—75. [6] A. Bodaghi, Th.M. Rassias, and A. Zivari-Kazempour, A fixed point approach to the stability of additive-quadraticquartic functional equations, Int. J. Nonlinear Anal. Appl. 11 (2020), no. 2, 17–28. [7] M.F. Bota-Borticeanu and A. Petrusel, Ulam-Hyers stability for operatorial equations, Ann. Alexandru Ioan Cuza Univer. Math. 57 (2011), 65–74. [8] M.F. Bota, E. Karapinar and O. Mlesnite, Ulam -Hyers stability results for fixed point problems via α − ψcontractive mapping in (b)-metric space, Abstr. Appl. Anal. 2013 (2013), Article ID 825293, 2013, 6 pages. [9] L. Cadariu, L. Gavruta and P. Gavruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal. 2012 (2012), Article ID 712743, 10 pages. [10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univer. Ostraviensis 1 (1993), no. 1, 5–11. [11] A. Felhi, S. Sahmim and H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for α − λcontractions on quasi b-metric spaces, Fixed Point Theory Appl. 2016 (2016), no.1, 20 pages. [12] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math, Sci. 14 (1991), 431–434. [13] S.M. Jung, Hyers-Ulam stability of linear partial differential equations of first order, Appl. Math. Lett. 22 (2009), 70–74. [14] N. Lungu and D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl. 385 (2012), 86–91. [15] E. Karapinar, Fixed point theory for cyclic weak-contraction, Appl. Math. Lett. 24 (2011), 822-825. [16] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Soc. 27 (1941), no.4, 222–224. [17] D.H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkh¨auser, Boston, 1998. [18] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York,2011. [19] M.A. Kutbi and W. Sintunavarat, Ulam-Hyers stability and well-posedness of fixed point problems for λ-contraction mapping in metric spaces, Abstr. Appl. Anal. 2014 (2014), Article ID 268230. [20] A. Prastaro and T.M. Rassias, Ulam stability in geometry of PDE’s, Nonlinear Funct. Anal. Appl. 8 (2003), 259–278. [21] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), no. 2, 305–320. [22] I.A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes Bolyai Math. 54 (2009), 125-–134. [23] S. Reich and A.J. Zaslawski, Well-posedness of fixed point problems, Far East J. Math. Sci. Special Volume (2001), no. 3, 393–401. [24] B. Samet, C, Vetro and P. Vetro, Fixed point theorems for α − ψ -contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165. 25] F.A. Tise and I.C. Tise, Ulam-Hyers-Rassias stability for set integral equations, Fixed Point Theory 13 (2012), no. 2, 659—668.
[26] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Scince Editors, Wiley, New York, 1960. | ||
آمار تعداد مشاهده مقاله: 16,470 تعداد دریافت فایل اصل مقاله: 360 |