
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,938 |
تعداد دریافت فایل اصل مقاله | 7,656,397 |
Existence and stability results for a class of nonlinear fractional $q$-integro-differential equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 13، دوره 14، شماره 7، مهر 2023، صفحه 143-158 اصل مقاله (591.95 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.7128 | ||
نویسندگان | ||
Mohammad esmael Samei* ؛ Azam Fathipour | ||
Department of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran | ||
تاریخ دریافت: 24 اسفند 1400، تاریخ بازنگری: 22 تیر 1401، تاریخ پذیرش: 19 شهریور 1401 | ||
چکیده | ||
This paper deals with the stability results for the solution of a fractional $q$--integro-differential problem with integral conditions. Using Krasnoselskii's, and Banach's fixed point theorems, we prove the existence and uniqueness of results. Based on the results obtained, conditions are provided that ensure the generalized Ulam stability of the original system on a time scale. The results are illustrated by the examples under the numerical technique. | ||
کلیدواژهها | ||
$q$-integro-differential problem؛ Krasnoselskii's theorem؛ stability | ||
مراجع | ||
[1] N. Abdellouahab, B. Tellab, and K. Zennir, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, Kragujevac J. Math. 46 (2022), no. 5, 685–699. [2] C.R. Adams, The general theory of a class of linear partial q−difference equations, Trans. Amer. Math. Soc. 26 (1924), 283–312. [3] M.H. Annaby and Z.S. Mansour, q−Fractional Calculus and Equations, Springer Heidelberg, Cambridge, 2012. [4] F. Atici and P.W. Eloe, Fractional q−calculus on a time scale, J. Nonlinear Math. Phys. 14 (2007), no. 3, 341–352. [5] H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fixed Point Theory Appl. 20 (2018), no. 2, 7 pages. [6] R.A.C. Ferreira, Nontrivials solutions for fractional q−difference boundary value problems, Electronic J. Qual. Theory Differ. Equ. 70 (2010), 1–101. [7] S.N. Hajiseyedazizi, M.E. Samei, J. Alzabut, and Y. Chu, On multi-step methods for singular fractional q–integrodifferential equations, Open Math. 19 (2021), 1378––1405. [8] F.H. Jackson, q−difference equations, Amer. J. Math. 32 (1910), 305–314. [9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. [10] P.M. Rajkovic, S.D. Marinkovic, and M.S. Stankovic, Fractional integrals and derivatives in q−calculus, Appl. Anal. Discrete Math. 1 (2007), 311–323. [11] M. E. Samei, V. Hedayati, and Sh. Rezapour, Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ. 2019 (2019), 163. [12] M.E. Samei, R. Ghaffari, S.W. Yao, M.K.A. Kaabar, F. Mart´ınez, and M. Inc, Existence of solutions for a singular fractional q−differential equations under Riemann–Liouville integral boundary condition, Symmetry 13 (2021), 135. [13] M.E. Samei, H. Zanganeh, and S.M. Aydogan, Investigation of a class of the singular fractional integro-differential quantum equations with multi-step methods, J. Math. Ext. 15 (2021), 1–54. | ||
آمار تعداد مشاهده مقاله: 16,556 تعداد دریافت فایل اصل مقاله: 204 |