
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,728 |
تعداد دریافت فایل اصل مقاله | 7,656,157 |
stability of the quadratic functional equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 4، دوره 1، شماره 2، آبان 2010، صفحه 26-35 اصل مقاله (207.03 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2010.72 | ||
نویسندگان | ||
E. Elqorachi* 1؛ Y. Manar1؛ Th. M. Rassias2 | ||
1Department of Mathematics, Faculty of Sciences, University Ibn Zohr, Agadir, Morocco | ||
2Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece | ||
تاریخ دریافت: 23 بهمن 1388، تاریخ بازنگری: 27 اردیبهشت 1389، تاریخ پذیرش: 03 خرداد 1389 | ||
چکیده | ||
In the present paper a solution of the generalized quadratic functional equation $$ f(kx+ y)+f(kx+\sigma(y))=2k^{2}f(x)+2f(y),\phantom{+} x,y\in{E}$$ is given where $\sigma$ is an involution of the normed space $E$ and $k$ is a fixed positive integer. Furthermore we investigate the Hyers-Ulam-Rassias stability of the functional equation. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided. | ||
کلیدواژهها | ||
Hyers-Ulam-Rassias stability؛ quadratic functional equation | ||
آمار تعداد مشاهده مقاله: 49,147 تعداد دریافت فایل اصل مقاله: 3,328 |