
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,769 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
More on proper commuting and Lie mappings on generalized matrix algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 28، دوره 14، شماره 8، آبان 2023، صفحه 311-325 اصل مقاله (440.85 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25549.3051 | ||
نویسنده | ||
Amir Hossein Mokhtari* | ||
Technical Faculty of Ferdows, University of Birjand, Birjand, Iran | ||
تاریخ دریافت: 20 آذر 1400، تاریخ پذیرش: 19 بهمن 1400 | ||
چکیده | ||
This paper is devoted to proper linear mappings on generalized matrix algebras and by obtaining their general form, we could obtain good results for commuting mappings and Lie centralizer and Lie triple centralizers, which are clearly established for triangular algebras and nest algebras as well. | ||
کلیدواژهها | ||
Commuting mapping؛ Generalized matrix algebra؛ Lie centralizer؛ Lie triple centralizer | ||
مراجع | ||
[1] A. Barari, B. Fadaee and H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc. 45 (2019), 1573–1583. [2] B. Behfar and H. Ghahramani, Lie maps on triangular algebras without assuming unity, Mediterr. J. Math. 18 (2021), 215. [3] D. Benkovic, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra 63 (2015), 141–165. [4] D. Benkovic and N. ˇSirovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl. 437 (2012), 2271–2284. [5] M. Bresar, Commuting maps: A survey, Taiwanese J. Math. 8 (2004), 361–397. [6] W.S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001), 117–127. [7] B. Fadaee and H. Ghahramani, Linear maps on C∗-algebras behaving like (anti-)derivations at orthogonal elements, Bull. Malays. Math. Sci. Soc. 43 (2020), 2851–2859. [8] B. Fadaee and H. Ghahramani, Lie centralizers at the zero products on generalized matrix algebras, J. Alg. Appl. 21 (2022), no. 8. [9] A. Fosner and W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory 4 (2019), no. 2, 342–350. [10] H. Ghahramani, Additive mappings derivable at nontrivial idempotents on Banach algebras, Linear Multilinear Algebra 60 (2012), 725–742. [11] H. Ghahramani, Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal elements, Results Math. 73 (2018), 132–146. [12] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. 15 (2018), no. 2, 1–10. [13] H. Ghahramani and W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal. 12 (2021), 1–12. [14] F. Ghomanjani and M.A. Bahmani, A note on Lie centralizer maps, Palest. J. Math. 7 (2018), no. 2, 468–471. [15] A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Commun. Algebra 49 (2021), no. 1, 278–291. [16] Y. Li, F. Wei and A. Fosner, k-commuting mappings of generalized matrix algebras, Period. Math. Hungar. 79 (2019), no. 1, 50–77. [17] L. Liu, On nonlinear Lie centralizers of generalized matrix algebras, Linear Multilinear Algebra 70 (2020), 2693–2705. [18] C.R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 57–61. [19] A.H. Mokhtari and H.R. Ebrahimi Vishki, More on Lie derivations of generalized matrix algebras, Miskolc Math. Notes, 1 (2018), 385–396. [20] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 83–142. [21] A.D. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), no. 2, 335–345. [22] Z.K. Xiao and F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), 2178–2197. [23] Z. Xiao and F. Wei, Lie triple derivations of triangular algebras, Linear Algebra Appl. 437 (2012), no. 5, 1234–1249. | ||
آمار تعداد مشاهده مقاله: 16,647 تعداد دریافت فایل اصل مقاله: 572 |