
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,807 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Comparison of some Bayesian shrinkage estimation for Frechet distribution with simulations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 178، دوره 14، شماره 1، فروردین 2023، صفحه 2265-2278 اصل مقاله (951.83 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.7232 | ||
نویسندگان | ||
Zahra Ibrahim Abd Abbas Al-Jabouri1؛ Abdulhussien Hassan Habib Al-Taee* 2 | ||
1Department of Statistics, Faculty of Administration and Economics, Kerbala University, Iraq | ||
2AL Amall Collage, Kerbala, Iraq | ||
تاریخ دریافت: 14 مرداد 1401، تاریخ بازنگری: 04 مهر 1401، تاریخ پذیرش: 20 آبان 1401 | ||
چکیده | ||
The Frechet distribution is one of the important statistical distributions and it has many applications, especially in the field of distributing the maximum extent of disease precipitation and river drainage, and estimating the parameters of the Frechet distribution is very important, and for that research came in an attempt to compare several methods of estimating the parameter of Frechet distribution based on different Bayesian methods with (square loss, Linux and Unix) functions. In this research, several simulation experiments were conducted according to the difference in (sample size, value of distribution parameters and estimation methods) and the results were compared based on mean square error criteria, it is possible to use other estimation methods such as (moments and percentile), for other distributions such as (Gumbel and Lindley). | ||
کلیدواژهها | ||
Frechet distribution؛ Bayesian Shrinkage Estimators؛ Square Loss Function؛ Linux Loss Function؛ Unix Loss Function. Mean Square Error | ||
مراجع | ||
[1] A.Z. Afify, G. Hamedani, I. Ghosh and M. Mead, The transmuted Marshall-Olkin Fr´echet distribution: Properties and applications, Math. Stat. Comput. Sci. Faculty Res. Pub. 4 (2014), no. 4. [4] A. Drapella, The complementary Weibull distribution: unknown or just forgotten?, Qual. Reliab. Eng. Int. 9 (1993), no. 4, 383–385. | ||
آمار تعداد مشاهده مقاله: 17,036 تعداد دریافت فایل اصل مقاله: 231 |