
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,976 |
تعداد دریافت فایل اصل مقاله | 7,656,411 |
On some properties of elements in hypergroup algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 2، مهر 2022، صفحه 3307-3312 اصل مقاله (331.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23709.3960 | ||
نویسنده | ||
Ali Ghaffari* | ||
Department of Mathematics, University of Semnan, P. O. Box 35195-363, Semnan, Iran | ||
تاریخ دریافت: 15 فروردین 1400، تاریخ بازنگری: 27 خرداد 1400، تاریخ پذیرش: 27 مهر 1400 | ||
چکیده | ||
Let $H$ be a hypergroup with left Haar measure and let $L^1(H)$ be the complex Lebesgue space associated with it. Let $L^\infty(H)$ be the set of all locally measurable functions that are bounded except on a locally null set, modulo functions that are zero locally a.e. Let $\mu\in M(H)$. We want to find out when $\mu F\in L^\infty(H)^*$ implies that $F\in L^1(H)$. Some necessary and sufficient conditions is found for a measure $\mu$ for which if $\mu F\in L^1(H)$ for every $F\in L^\infty(H)^*$, then $F\in L^1(H)$. | ||
کلیدواژهها | ||
Banach algebras؛ Discrete topology؛ Hypergroup algebras؛ Second dual of hypergroup algebras؛ Weak topology | ||
مراجع | ||
[1] M. Amini and C.H. Chu, Harmonic functions on hypergroups, J. Funct. Anal. 261 (2011), 1835–1864. [2] M. Amini and A.R. Medghalchi, Amenability of compact hypergroup algebras, Math. Nach. 287 (2014), 1609–1617. [3] M. Amini, H. Nikpey and S.M. Tabatabaie, Crossed product of C*-algebras by hypergroups, Math. Nach. 292 (2019), 1897–1910. [4] J.F. Berglund, H.D. Junghenn and P. Milnes, Analysis on Semigroups: Function Spaces, Compatifications, Representations, Wiley-Interscience and Canadian Mathematics Series of Monographs and Texts, 1988. [5] W.R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, vol. 20, de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1995. [6] H.G. Dales, Banach algebra and automatic continuity, London Math. Soc. Monogr. Ser. Clarendon Press, 2000. [7] A. Ghaffari, T. Haddadi, S. Javadi and M. Sheybani, On the structure of hypergroups with respect to the induced topology, Rocky Mount. J. Math. 52 (2022), 519–533. [8] A. Ghaffari and M.B. Sahabi, Characterizations of amenable hypergroups, Wavelets Linear Algebras 4 (2017), 1–9. [9] R.A. Kamyabi-Gol, Topological center of dual Banach algebras associated to hypergroups and invariant complemented subspaces, Ph.D. Thesis, University of Alberta, 1997. [10] W. Rudin, Functional analysis, McGraw Hill, New York, 1991. [11] N. Tahmasebi, Fixed point properties, invariant means and invariant projections related to hypergroups, J. Math. Anal. Appl. 437 (2016), 526–544. [12] B. Willson, A fixed point theorem and the existence of a Haar measure for hypergroups satisfying conditions related to amenability, Canad. Math. Bull. 58 (2015), 415–422. [13] B. Willson, Configurations and invariant nets for amenable hypergroups and related algebras, Trans. Amer. Math. Soc. 366 (2014), 5087–5112. | ||
آمار تعداد مشاهده مقاله: 43,812 تعداد دریافت فایل اصل مقاله: 219 |