
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,969 |
تعداد دریافت فایل اصل مقاله | 7,656,409 |
Approximate symmetries and conservation laws of forced fractional oscillator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 17، دوره 14، شماره 2، اردیبهشت 2023، صفحه 195-205 اصل مقاله (391.42 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25979.3178 | ||
نویسندگان | ||
Mehdi Nadjafikhah1؛ Mansoureh Mirala* 2؛ Mohamad Chaichi2 | ||
1School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, 16846--13114, Iran | ||
2Department of Mathematics, Payame Noor University, Tehran 19395--4697, Iran | ||
تاریخ دریافت: 30 دی 1400، تاریخ بازنگری: 10 مرداد 1401، تاریخ پذیرش: 18 آبان 1401 | ||
چکیده | ||
The approximate equation for the forced fractional oscillator is obtained by approximation of the Riemann- Liouville fractional derivatives. And the approximate symmetries and conservation laws of the forced fractional oscillator are derived when the system is in resonance. | ||
کلیدواژهها | ||
forced fractional oscillator؛ approximate symmetry؛ resonance؛ approximate conservation law | ||
مراجع | ||
[1] R. Caponetto, G. Dongola, L. Fortuna and I. Petrasi, Fractional order systems.Modeling and control applications, World Scientific Series on Nonlinear Science, Series A, 2010.
[2] R. K. Gazizov and S.Yu. Lukashchuk, Approximations of fractional differential equations and approximate symmetries, IFAC Papers OnLine 50 (2017), 14022–14027. [3] R. Herrmann, Fractional Calculus. An introduction for Physicists, World Scientific Publishing Co., 2014. [4] N.H. Ibragimov, V.F. Kovalev, Approximate and renormgroup symmetries, Nonlinear Phys. Sci., Springer, 2009. [5] N.H. Ibragimov, Nonlinear self-adjointness and conservation laws. J. Phys. A: Math Theor. 44 (2011), no. 43, 1–11. [6] N.H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, arXiv:1109.1728 [math-ph] (2011). Arch Alga 7/8. [7] R.C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), no. 2, 299–307. [8] P. Labedzki, R. Pawlikowski and A. Radowicz, Axial vibrations of bars using fractional viscoelastic material models, Vib. Phys. Syst. 29 (2018), 1–8. [9] P. Labedzki, R. Pawlikowski and A. Radowiczi, Transverse vibration of a cantilever beam under base excitation using fractional rheological model, AIP Conf. Proc., Kielce University of Technology, 2018, pp. 1–10. [10] P. Labedzki, R. Pawlikowski and A. Radowicz, On fractional forced oscillator, AIP Conf. Proc., Kielce University of Technology, 2019, pp. 1–9. [11] Y.J. Lee, Vibrations and Waves, 8.03SC Physics III, MIT Open Course Ware, 2016.
[12] S.Yu. Lukashchuk, Approximate conservation laws for fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 68 (2019), 147–159. [13] F. Mainardi, Fractional calculus and waves in Linear viscoelasticity, Imperial College Press, 2005. [14] O. Martin, Nonlinear dynamic analysis of viscoelastic beams using a fractional rheological model, Appl. Math. Model. 43 (2017), 351–359. [15] M. Nadjafikhah and A. Mokhtary, Approximate symmetry analysis of Gardner equation, arXiv:1212.3604 (2012) [math.AP] 14. [16] S. Rogosin and F. Mainardi, George William Scott-Blair – the pioneer of fractional calculus in rheology, npreprint arXiv:1404 .3295 (2014) 1–22. [17] J. Sabatier, O.P Agrawal and J.A Tenreiro Machado, Advances in fractional calculus, Theoretical Developments and Applications in Physics and Engineering, Springer Dordrecht, 2007. [18] J. Yuan, Y. Zhang, J. Liu, B. Shi, M. Gai and S. Yang, Mechanical energy and equivalent differential equations of motion for single-degree-of-freedom fractional oscillators, J. Sound Vib. 397 (2017), 192–203. | ||
آمار تعداد مشاهده مقاله: 16,299 تعداد دریافت فایل اصل مقاله: 239 |