- [1] Diwan, A., Sharma, R., Roy, A.K., Mitra, S.K. (2021). Keypoint-based comprehensive copy-move forgery detection. IET Image Process 15, pp. 1298–1309.
- [2] Gan, Y., Zhong, J., Vong, Ch. (2022). A Novel Copy-Move Forgery Detection Algorithm via Feature Label Matching and Hierarchical Segmentation Filtering. Information Processing & Management 59, No. 102783.
- [3] Li, F.F. (2022). Machine Learning in Computer Vision, https://www.cs.princeton.edu.
- [4] Ouyang, J., Liu, Y., Liao, M. (2017). Copy-move forgery detection based on deep learning. 2017 10th International Congress on Image and Signal Processing, Bio-Medical Engineering and Informatics (CISP-BMEI), Shanghai, China.
- [5] Rodriguez-Ortega, Y., Ballesteros, D.M., Renza, D. (2021). Copy-Move Forgery Detection (CMFD) Using Deep Learning for Image and Video Forensics, J Imaging. Vol. 7, no. 3.
- [6] Liu, Y., Xia, Ch., Zhu, X., Xu, Sh. (2020). Two-Stage Copy-Move Forgery Detection with Self Deep Matching and Proposal Superglue, arXiv: 2012.08697.
- [7] Zainal Abidin, A.B., Abdul Majid, H.B., Samah, A.B.A., Hashim, H.B. (2019). Copy-Move Image Forgery Detection Using Deep Learning Methods: A Review, 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), Johor Bahru, Malaysia.
- [8] Kiani, K., Rezaeerad, S., Rastgoo, R. (2021). HMM-based Face Recognition Using SVD and Half of the Face Image, Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE), vol. 1, no. 2.
- [9] Majidi, N., Kiani, K., Rastgoo, R. (2020). A deep model for super-resolution enhancement from a single image, Journal of AI and Data Mining, vol. 8, no. 4, pp. 451-460.
- [10] Youssef, B., Atta, E. (2016). Image Forgery Detection using FREAK Binary Descriptor and Level Set Segmentation. International Journal of Scientific & Engineering Research 7.
- [11] Sridevi, M., Aishwarya, S., Bokadia, D. (2019). Parallel Image Forgery Detection Using FREAK Descriptor. Information and Communication Technology for Intelligent Systems 107, pp. 619-630.
- [12] Khudhair, Z.N., Mohamed, F., Kadhim, K.A. (2021). A Review on Copy-Move Image Forgery Detection Techniques. Journal of Physics: Conference Series.
- [13] Alahi, A., Ortiz, R. & Vandergheynst, P. (2012). FREAK: Fast Retina Keypoint. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517.
- [14] Warif, N et al. (2016). Copy-move forgery detection: Survey, challenges, and future directions. Journal of Network and Computer Applications, vol. 75, pp. 259–278.
- [15] Birajdar, G.K. & Mankar, V.H. (2013). Digital image forgery detection using passive techniques: A survey. Digital Investigation, Vol. 10, no. 3, pp. 226-245.
- [16] Sridevi M., Mala C. & Sanyam S. (2012). Comparative Study of Image Forgery and Copy-Move Techniques. In: Wyld D., Zizka J., Nagamalai D. (eds). Advances in Computer Science, Engineering & Applications. Advances in Intelligent and Soft Computing, vol. 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30157-5_71.
- [17] Meena, K.B. & Tyagi, V. (2019) Image Forgery Detection: Survey and Future Directions. In: Shukla R., Agrawal J., Sharma S., Singh Tomer G. (eds) Data, Engineering, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-6351-1_14.
- [18] Al_Azrak, F.M., Sedik, A., Dessowky, M.I. et al. (2020). An efficient method for image forgery detection based on trigonometric transforms and deep learning. Multimed Tools Appl, vol. 79, pp. 18221–18243. https://doi.org/10.1007/s11042-019-08162-3.
- [19] Fridrich, J., Soukal, D. & Lukas, J. (2003). Detection of copy-move forgery in the digital images. Proceeding of DFRWS, Cleveland, OH.
- [20] Farid, H. (2003). A picture tells a thousand lies. New Scientist, 6 Sep 2003.
- [21] Popescu, A. & Farid, H. (2005). Exposing Digital Forgeries in Color Filter Array Interpolated Images. IEEE Trans. on signal processing, vol. 53, no. 10, pp. 3948-3959.
- [22] Popescu, A. & Farid, H. (2004). Exposing digital forgeries by detecting duplicated image regions. Dartmouth College, Computer Science, Tech. Rep. TR2004-515.
- [23] Luo, W., Huang, J. & Qiu, G. (2006). Robust detection of region-duplication forgery in digital image. Proc. of ICPR, Washington, USA.
- [24] Li, G., Wu, Q., Tu, D. & Sun, S.J. (2007). A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. Proc. of IEEE ICME, Beijing, China.
- [25] Mahdian, B & Saic, S. (2007). Detection of copy-move forgery using a method based on blur moment invariants. Forensic Science International, vol. 171, no. 2-3, pp. 180–189.
- [26] Ryu, S.J., Lee, M.-J., Lee, H.-K. (2010). Detection of copy-rotate-move forgery using Zernike moments. Proc. of International Workshop on Information Hiding, Calgary, Canada.
- [27] Bravo, S. & Nandi, A.K. (2011). Automated detection and localization of duplicated regions affected by reflection, rotation, and scaling in image forensics. Signal Processing, vol. 91, pp. 1759–70.
- [28] Lowe. (1999). Object recognition from local scale-invariant features., 1999. The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157.
- [29] Bay, H., Tuytelaars, T. & Van Gool. T. (2006). SURF: Speeded up robust features. ECCV, Graz, Austria, pp. 404–417.
- [30] Leutenegger, S., Chli, M. & Siegwart, R. (2011). Brisk: Binary robust invariant scalable keypoints. 2011 International Conference on Computer Vision, Barcelona, Spain.
- [31] Calonder, M., Lepetit, V., Strecha, C. & Fua, P. (2010). Brief: Binary robust independent elementary features. ECCV, Heraklion, Crete, Greece, pp. 778–792.
- [32] Huang, H., Guo, W. & Zhang, Y. (2008). Detection of copy-move forgery in digital images using SIFT algorithm. Proc. of IEEE Pacific-Asia Workshop on Computational Intell. and Industrial Application, Wuhan, China.
- [33] Irene, L., Caldelli, R., Del, A. & Serra, G. (2011). A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inf Forensics Security, vol. 6, pp. 1099–110.
- [34] Harris, C. & Stephens, M. (1988). A combined corner and edge detector. In Alvey vision conference, Manchester, UK, vol. 15, pp. 147-151.
- [35] Rosten, E. & Drummond, T. (2006). Machine learning for high-speed corner detection. ECCV, Graz, Austria, vol. 1, pp. 430–443.
- [36] Fischler, M. & Bolles, R. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, vol. 24, no. 6, pp. 381–395.
|