
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,766 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
Metric dimension and neighbourhood resolving set for the zero divisor graphs of order at most 10 of a small finite commutative ring | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 30، دوره 14، شماره 11، بهمن 2023، صفحه 365-373 اصل مقاله (524.19 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.22867.3474 | ||
نویسندگان | ||
Shamsudheen P V؛ Shahida A T* | ||
Department of Mathematics, MES Mampad College Malappuram-676542, India | ||
تاریخ دریافت: 14 اردیبهشت 1401، تاریخ بازنگری: 25 خرداد 1401، تاریخ پذیرش: 16 تیر 1401 | ||
چکیده | ||
Let $R$ be a commutative ring and $\Gamma(R)$ be its zero-divisor graph. All the vertices of zero divisor graphs are the non-zero divisors of the commutative ring, with two distinct vertices joined by an edge in case their product in the commutative ring is zero. In this paper, we study the metric dimension and neighbourhood resoling set for the zero divisor graphs of order 3,4,5,6,7,8,9,10 of a small finite commutative ring with a unit. | ||
کلیدواژهها | ||
Commutative ring؛ Zero divisor graph؛ Resolving set؛ Metric dimension؛ Neighbourhood set | ||
مراجع | ||
[1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434–447. [2] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208–226. [3] G. Chartrand, L. Eroh, M.A. Johnson and R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), no. 1-3, 99–113. [4] J.A. Gallian, Contemporary Abstract Algebra, Fourth edition, University of Minnesota, Duluth, USA, 1998. [5] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1969. [6] E. Sampathkumar, Prabha S and Neeralagi, The neighbourhood number of a graph, Indian J. Pure. Appl. Math. 16 (1985), no. 2, 126–132. [7] E. Sampathkumar, Prabha S and Neeralagi The independent, perfect and connected neighbourhood numbers of a graph J. Combin. Inf. Syst. Sci. 19 (1994), 139–145. [8] P.J. Slater, Leaves of trees, Proc. 6th Southeastern Conf. Combin. Graph Theory and Comput., Congr. 14 (1975), no. 37, 549–559. [9] B. Sooryanarayana and A.S. Suma, On classes of neighborhood resolving sets of a graph, Electronic J. Graph Theory Appl. 6 (2018), no. 1, 29–36. [10] S. Suganthi, V. Swaminathan, A.P. Pushpalatha and G. Jothilakshmi, Neighbourhood Resolving sets in graphs, Int.J. Comput. Technol. 1 (2011), no. 4, 117–122. [11] S. Suganthi, V. Swaminathan, A.P. Pushpalatha and G. Jothilakshmi, Neighbourhood resolving sets in graphs-I, J. Math. Comput. Sci. 2 (2012), no. 4, 1012–1029. | ||
آمار تعداد مشاهده مقاله: 16,353 تعداد دریافت فایل اصل مقاله: 223 |