
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,892 |
تعداد دریافت فایل اصل مقاله | 7,656,361 |
Convergence theorems for a general class of nonexpansive mappings in Banach spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 309، دوره 14، شماره 6، شهریور 2023، صفحه 371-386 اصل مقاله (439.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.24114.2672 | ||
نویسنده | ||
Seyit Temir* | ||
Faculty of Arts and Sciences, Adiyaman University, 02040, Adiyaman, Turkey | ||
تاریخ دریافت: 11 اردیبهشت 1400، تاریخ بازنگری: 12 مرداد 1400، تاریخ پذیرش: 30 مرداد 1400 | ||
چکیده | ||
In this paper, we introduce a new iteration process for the approximation of fixed points. We show that our iteration process is faster than the existing iteration processes like the M-iteration process and the K-iteration process for contraction mappings. Also, we prove that the new iteration process is stable. Finally, we study the convergence of a new iterative scheme to a fixed point for the $(\alpha,\beta)$ -Reich-Suzuki nonexpansive type mappings in Banach space. | ||
کلیدواژهها | ||
Fixed point؛ convergence؛ Opial’s condition؛ generalized nonexpansive mappings | ||
مراجع | ||
[1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik 66 (2014), no. 2, 223–234. [2] R.P. Agarwal, D. O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), no. 1, 61–79. [3] A. Amini-Harandi, M. Fakhar and H.R. Hajisharifi, Approximate fixed points of α-non-expansive mappings, J. Math. Analy. Appl. 467 (2018), no. 2, 1168–1173. [4] K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), no. 13, 4378–4391. [5] V. Berinde, On the stability of some fixed point procedures, Bul. Stiint. Univ. Baia Mare, Ser. B, Mat. Inf. 18 (2002), no. 1, 7—14. [6] J.A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. [7] M. Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 44 (1974), no. 2, 369–374. [8] A. Ekinci and S. Temir, Convergence theorems for Suzuki generalized nonexpansive mapping in Banach spaces, Tamkang J. Math. 54 (2023), no. 1, 57–67. [9] A. M. Harder and T. L. Hicks, Stability Results for Fixed Point Iteration Procedures, Math. Japon. 33 (1988), no. 5, 693–706. [10] N. Hussain, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, J. Nonlinear Convex Analy. 19 (2018), 1383–1393. [11] J. Garcia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Analy. Appl. 375 (2011), no. 1, 185–195. [12] M. Gregus Jr., A fixed point theorem in Banach space, Boll. Un. Mat. Ital. A 17 (1980), no. 1, 193–198. [13] F. Gursoy and V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, eprint arXiv 1403.2546 (2014), 1–16. [14] I. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150. [15] R. Kannan, Fixed point theorems in reflexive Banach spaces, Proc. Amer. Math. Soc. 38 (1973), 111–118. [16] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. [17] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Analy. Appl. 251 (2000),217–229. [18] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. (1967), 591–597. [19] R. Pandey, R. Pant, W. Rakocevic and R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math. 74 (2019), no. 7, 24 pages. [20] R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Analy. Optim. 38 (2017), no. 2, 248–266. [21] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl. 6 (1890), 149–210. [22] S. Reich, Kannan’s fixed point theorem, Boll. Un. Mat. Ital. 4 (1971), no. 4, 1–11. 23] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159. [24] H.F. Senter and W.G. Dotson Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375–380. [25] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Analy. Appl. 340 (2008), no. 2, 1088–1095. [26] S. Temir, Weak and strong convergence theorems for three Suzuki’s generalized nonexpansive mappings, Pub. Inst. Math. 110 (2021), no. 124, 121–129. [27] B.S. Thakur, D. Thakur and M. Postolache, A new iteration scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput. 275 (2016), 147–155. [28] K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat 32 (2018), no. 1, 187–196. [29] K. Ullah, J. Ahmad and M. de la Sen, On generalized nonexpansive maps in Banach spaces, Computation 8, 61 (2020). | ||
آمار تعداد مشاهده مقاله: 16,461 تعداد دریافت فایل اصل مقاله: 361 |