
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,855 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
Almost order-weakly compact operators on Banach lattices | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 352، دوره 15، شماره 1، فروردین 2024، صفحه 353-360 اصل مقاله (359.15 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.26958.3462 | ||
نویسندگان | ||
Mohammad Pazira؛ Mina Matin؛ Kazem Haghnejad Azar* ؛ Ali Abadi | ||
Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran | ||
تاریخ دریافت: 03 اردیبهشت 1401، تاریخ بازنگری: 13 تیر 1401، تاریخ پذیرش: 15 تیر 1401 | ||
چکیده | ||
A continuous operator $T$ between two Banach lattices $E$ and $F$ is called almost order-weakly compact, whenever for each almost order bounded subset $A$ of $E$, $T(A)$ is a relatively weakly compact subset of $F$. We show that the positive operator $T$ from $E$ into a Dedekind complete Banach lattice $F$ is almost order-weakly compact iff $T(x_n) \xrightarrow{\|.\|}0$ in $F$ for each disjoint almost order bounded sequence $\{x_n\}$ in $E$. In this manuscript, we study some properties of this class of operators and its relationships with the others known classes of operators. | ||
کلیدواژهها | ||
almost order bounded؛ weakly compact؛ order weakly compact؛ almost order-weakly compact | ||
مراجع | ||
[1] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Berlin, 2006. [2] B. Aqzzouz, A. Elbour and J. Hmichane, The duality problem for the class of b-compact operators, Positivity. 13 (2009), no. 4, 683–692. [3] B. Aqzzouz, A. Elbour and J. Hmichane, Some results on order weakly compact operators, Math. Bohemica 134 (2009), no. 4, 359–367. [4] J.B. Conway, A course in functional analysis, 2nd edition, Springer-Verlag, New York, 1990. [5] Y.Deng, M.O’Brien and V.G.Troitsky. Unbounded norm convergence in Banach lattices, Positivity. 21 (2017), 963–974. [6] N. Gao, Unbounded order convergence in dual spaces, J. Math. Anal. Appl. 419 (2014), 347–354. [7] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl. 415 (2014), 931–947. [8] K. Haghnejad Azar, M. Matin and R. Alavizadeh, Unbounded order-norm continuous and unbounded norm continuous operators, Filomat 35 (2021), no. 13, 4417—4426. [9] K.D. Schmidt, On the modulus of weakly compact operators and strongly additive vector measures, Proc. Amer. Math. 102 (1988), no. 4, 862–866. [10] H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974. [11] W. Wnuk, Some characterizations of Banach lattices with the Schur property, Cong. Funct. Anal. Rev. Mat. Univ. Complut. Madrid 2 (suppl.), 1989, pp. 217–224. | ||
آمار تعداد مشاهده مقاله: 25,491 تعداد دریافت فایل اصل مقاله: 353 |