
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,770 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
LG-paracompactness of LG-fuzzy topological metric spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 25، دوره 15، شماره 1، فروردین 2024، صفحه 313-320 اصل مقاله (399.71 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23018.2456 | ||
نویسنده | ||
Marzieh Mostafavi* | ||
Department of Mathematics, Faculty of Basic Sciences, University of Qom, Qom, Iran. | ||
تاریخ دریافت: 10 فروردین 1400، تاریخ بازنگری: 15 تیر 1400، تاریخ پذیرش: 30 مرداد 1400 | ||
چکیده | ||
In this manuscript, we introduce $LG^{c}$-fuzzy Euclidean topological space in which $L$ denotes a completely distributive lattice with a countable subset dense in it. We use the structure of $LG$-fuzzy topological space $(X,\ \mathfrak{T})$, which $X$ is an $L$-fuzzy subset of the crisp set $M$ and $\mathfrak{T}: L^M_X \to L $, is an $L$-gradation of openness on $X$ to define the fundamental concepts of $LG$-fuzzy analysis such as $LG$-locally compactness and $LG$-paracompactness and prove several theorems. In consequence, we show that any second countable Hausdorff $LG$-fuzzy topological space that is $LG$-locally compact is $LG$-paracompact. Also from any given metric $\rho$ on a crisp set $M$ and $L$-fuzzy subset $X$ of it, we construct an $L$-gradation of openness $\mathfrak{T}_{\rho}$ on $X$ and obtain $LG$-fuzzy topological metric space $(X,\mathfrak{T}_{\rho} )$. Finally, we prove an interesting theorem: Every $LG$-fuzzy topological metric space, is $LG$-paracompact. | ||
کلیدواژهها | ||
$LG^{c}$-fuzzy Euclidean topological space؛ $LG$-locally compact؛ $LG$-fuzzy topological metric space؛ }{ $LG$-paracompact | ||
مراجع | ||
[1] N. Bourbaki, General Topology I, Addison-Wesley, 1966. [2] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190. [3] K.C. Chattopadhyay, R.N. Hazra, and S.K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets Syst. 49 (1992), no. 2, 234–242. [4] R. Engelking, General Topology, Heldermann Verlag, 1989. [5] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), no. 3, 365–368. [6] J.G. Camarena and S. Morillas, On the importance of the choice of the (fuzzy) metric for a practical application, Proc. Workshop Appl. Topology WiAT’10, 2011, pp. 67–73. [7] V. George and S. Romaguera, Some properties of fuzzy metric space, Fuzzy Sets Syst. 115 (2000), no. 3, 485–489. [8] V. George and S. Romaguera, On completion of fuzzy metric Spaces, Fuzzy Sets Syst. 130 (2002), no. 3, 399–404. [9] J.A. Goguen, L-Fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145–174. [10] V. Gregori and A. Vidal, Fuzziness in Chang’s fuzzy topological spaces, Rend. Istit. Mat. Univ. Trieste 30 (1999), 111–121. [11] V. Gregori, Some results in fuzzy metric spaces, XVI Encuentro de Topologıa, 2009. [12] V. Gregori, S. Morillas, and A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy Set Syst. 161 (2010), no. 5, 2193–2205. [13] V. Gregori, S. Morillas, and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Sets Syst. 170 (2011), no. 1, 95–111. [14] V. Gregori, S. Romgueraa and M. Sanchis, An identification theorem for the completion of the Hausdorff fuzzy metric spaces, Ital. J. Pure Appl. Math. 37 (2017), 49–58. [15] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), no. 3, 215–229. [16] Ch.Ch. Kang and W.J. Wang, Fuzzy reasoning-based directional median filter design, Signal Process. 9 (2009), 344-–351. [17] O. Kramosil and J. Michale, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), no. 5, 336–334. [18] S.R.T. Kudri and M.W. Warner, L-fuzzy local compactness, Fuzzy Sets Syst. 67 (1994), no. 3, 337—345. [19] R. Lowen, Compact Housdorff fuzzy topological spaces, Fuzzy Sets Syst. 67 (1981), 337–345. [20] F.G. Lupianez, Fuzzy perfect maps and fuzzy paracompactness, Fuzzy Sets Syset. 98 (1998), 137–140. [21] F.G. Lupianez, On some paracompactness-type properties of fuzzy topological spaces, Soft Comput. 23 (2019), no. 20, 9881–9883. [22] M.K. Luo, Paracompactness in fuzzy topological spaces, J. Math. Anal. Appl. 130 (1988), no. 1, 55–77. [23] R. Lowen, Compact Housdorff fuzzy topological spaces are topological, Topology Appl. 12 (1981), 65–74. [24] T. Onera, Some topological properties of fuzzy strong b-metric spaces, J. Linear Topological Alg. 8 (2019), no. 2, 127–131. [25] D. Qiu, R. Dong, and H. Li, On metric spaces induced by fuzzy metric spaces, Iran. J. Fuzzy Syst. 13 (2016), no. 2, 145–160. [26] P. Tirado, On compactness and G-compactness in fuzzy metric spaces, Iran. J. Fuzzy Sets Syst. 9 (2012), no. 4, 151–158. [27] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831–838. [28] M. Mostafavi, C∞ L-Fuzzy manifolds with gradation of openness and C∞ LG-fuzzy mappings of them, Iran. J. Fuzzy Syst. 17 (2020), no. 6, 157–174. [29] J. Munkres, Topology, Second Edition, Prentice Hall., 2000. [30] S. Schulte, S. Morillas, V. Gregori, and E.E. Kerre, A new fuzzy color correlated impulsive noise reduction method, IEEE Trans. Image Process. 16 (2007), no. 10, 2565—2575. [31] A.P. Shostak, On a fuzzy topological structure, Rendi. Ciec. Mat. Palermo Ser. II 11 (1985), 89–103. [32] A.H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982. [33] G. Valentin and R. Salvador, Some properties of fuzzy metric spaces, Fuzzy Sets Syst. 115 (2000), no. 3, 485–489. [34] H.M. Wali, Compactness of Hausdorff fuzzy metric spaces, Int. J. Appl. Math. 51 (2021), no. 1, 17–24. | ||
آمار تعداد مشاهده مقاله: 25,731 تعداد دریافت فایل اصل مقاله: 203 |