| تعداد نشریات | 21 |
| تعداد شمارهها | 664 |
| تعداد مقالات | 9,701 |
| تعداد مشاهده مقاله | 69,072,319 |
| تعداد دریافت فایل اصل مقاله | 48,505,127 |
Solutions and stability of variant of Van Vleck's and D'Alembert's functional equations | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقاله 24، دوره 7، شماره 2، اسفند 2016، صفحه 279-301 اصل مقاله (456.41 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2017.1803.1472 | ||
| نویسندگان | ||
| Th.M. Rassias* 1؛ Elhoucien Elqorachi2؛ Ahmed Redouani2 | ||
| 1Department of Mathematics, National Technical University of Athens, Zofrafou Campus, 15780 Athens, Greece | ||
| 2Ibn Zohr University, Faculty of Sciences Department of Mathematic, Agadir, Morocco | ||
| تاریخ دریافت: 29 آذر 1394، تاریخ بازنگری: 26 مرداد 1395، تاریخ پذیرش: 19 آبان 1395 | ||
| چکیده | ||
| In this paper. (1) We determine the complex-valued solutions of the following variant of Van Vleck's functional equation $$\int_{S}f(\sigma(y)xt)d\mu(t)-\int_{S}f(xyt)d\mu(t) = 2f(x)f(y), \;x,y\in S,$$ where $S$ is a semigroup, $\sigma$ is an involutive morphism of $S$, and $\mu$ is a complex measure that is linear combinations of Dirac measures $(\delta_{z_{i}})_{i\in I}$, such that for all $i\in I$, $z_{i}$ is contained in the center of $S$. (2) We determine the complex-valued continuous solutions of the following variant of d'Alembert's functional equation $$\int_{S}f(xty)d\upsilon(t)+\int_{S}f(\sigma(y)tx)d\upsilon(t) = 2f(x)f(y), \;x,y\in S,$$ where $S$ is a topological semigroup, $\sigma$ is a continuous involutive automorphism of $S$, and $\upsilon$ is a complex measure with compact support and which is $\sigma$-invariant. (3) We prove the superstability theorems of the first functional equation. | ||
| کلیدواژهها | ||
| semigroup؛ d'Alembert's equation؛ Van Vleck's equation, sine function؛ involution؛ multiplicative function, homomorphism, superstability | ||
|
آمار تعداد مشاهده مقاله: 46,244 تعداد دریافت فایل اصل مقاله: 41,863 |
||